Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
After 35 years or longer in service, the concrete infrastructure in wastewater collection systems and treatment plants has deteriorated due to various corrosion and physical degradation mechanisms. This paper reviews the major mechanisms that cause deterioration of concrete and protective coatings. Also, examples of infrastructure degradation are presented along with a discussion of the best diagnostic methods for condition assessment of concrete for the various mechanisms.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion Resistant Alloys (CRAs) have been widely used in oil & gas process systems since the 1980s due to their excellent resistance towards uniform corrosion in aggressive environments such as seawater and produced water containing CO2, organic acids and/or production chemicals. However, cases of localized corrosion in the form of pitting and crevice corrosion have regularly been observed. As an example, ISO(2) 21457 limits the max. operating temperature to 200C for 25 Cr super duplex stainless steel (UNS S32750/760) and 6-Mo austenittic stainless steels (UNS S31254) in chlorinated seawater systems, to avoid crevice corrosion.1
Crevice corrosion is a geometrical-dependent type of localized attack that occurs in occluded regions where a stagnant and corrosive electrolyte is in contact with the surface of a passive metal1,2. Crevices are present in all industrial designs and can lead to major failure since their detection is often challenging3,4. Main strategies for the prevention and mitigation of crevice corrosion include design awareness and adequate materials selection5.
This presentation is designed to assist wastewater treatment plant maintenance superintendents effectively design and implement maintenance painting projects. Recommended practices are described for all project phases, from the initial corrosion survey, through cost estimating, specification preparation, bidding, project administration, field inspection, and OSHA, environmental compliance and plant operation considerations.
To develop a Maintenance Coating Program encompassing cost justification for projects, pre-planning evaluation of safety and quality assurance programs. From two previous NACE Conference Papers.
F22 is a low alloy steel that typically contains 12% Carbon, 2.25% Chromium, and 1.0% Molybdenum1. This steel has been widely used in oil production systems, especially in well head design and construction. As a low alloy steel, F22 can be corroded by oilfield chemicals under certain circumstances. For example, it was observed in the Gulf of Mexico that typical scale inhibitor chemistries caused severe corrosion on F22.
Over the past several years, the Bureau of Reclamation’s Materials Engineering Research Laboratory has been developing and refining a test method to evaluate a coating’s resistance to erosion damage in sediment-laden immersion exposure. This test has initially been utilized as a screening/ranking method in selection of new coatings for the aforementioned severe service environments.
An operating company was concerned that its biocide and corrosion mitigation strategy was not sufficient to control corrosion in their pigging operations across the Gulf Coast of Texas. They provided water samples from several pigging access points that were heavily contaminated with SRBs, APBs, black deposits and oil. H2S was present in most of the samples suggesting a heavy presence of SRBs. They suspected that the black deposits were most likely FeS caused by the presence of microorganisms interacting with their pipelines. Indeed, culture vial tests (sometimes referred to as “bug bottles”) proved that the samples were heavily contaminated with microorganisms.
Mineral scales frequently occur in tanks, pipelines, cooling and heating system, production wells ofoil and gas, external and internal membrane, and other equipment during industrial processes,causing the reduction of process efficacy and millions of dollars on dealing with the scale issues. Asoil and gas are produced increasingly in more unconventional reservoirs, such as deeper and tighterzones, with new technologies, more challenges are encountered to mitigate scale problems.
One of the frequent and major problems encountered in the oil and gas production is theinternal corrosion of carbon steel pipelines. Corrosion can be categorized into uniform (orgeneral) corrosion, localized corrosion and erosion-corrosion. Uniform corrosion causesoverall metal loss and general thinning of metal. Localized corrosion has the appearanceof pits or grooves.
Several components in geothermal power plants need to be protected from the environment due to the corrosive nature of geothermal fluids used to generate the energy. Depending on the fluid properties for any location, the type of protection varies. In geothermal power plants, wear, erosion, corrosion, and scaling are all known problems1. These issues can lead to a variety of outcomes, ranging from decreased plant efficiency to upstream component failure. Failure of a component is thus a significant challenge in the geothermal industry, where materials need to operate in high temperature and high pressure environments. A major cost factor is also linked to the drilling of geothermal wells, where cost rises due to increased depth/distance of drilling, increased trip times, higher high temperature and high-pressure conditions which can lead to increased wear and corrosion of the materials. To address the issue, coatings can be considered to be a potential solution to extend the service life of downhole equipment.
Oilfield sulfide scale formation is peculiar to sour production scenarios, and for many oil and gas fields the issue of iron sulfide scale management downhole presents a major challenge. Historically iron sulfide scaling downwell have featured ‘reactive’ chemical dissolver interventions to recover well production once sulfide scale has deposited, and operators have published extensively on their experiences i.e. coiled tubing deployed dissolver technologies used in well clean-out treatments (Green, et.al. 2014, Wang et.al. 2017, Wang et.al. 2018, Buali et. al 2014).