Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Caustic soda (sodium hydroxide) is one of the most widely used inorganic chemicals in water treatment process. Improper injection rate or concentration have led to many failures in the industry. These failures have been mostly identified as Caustic Stress Corrosion Cracking (CSCC).
Caustic Stress Corrosion Cracking (CSCC) is a form of Environment Assisted Cracking (EAC), characterized by surface-initiated cracks that occur in materials exposed to caustic environment. EAC is defined as a cracking process caused by the synergistic effects of stress, and environment on a specific material. All three factors–stress, aggressive environment, and susceptible material are necessary for EAC. The environment aggressiveness escalates with increase of caustic concentration and metal temperature, in case of CSCC.
In natural seawater, microorganisms can fix, grow and develop on practically any surface, including stainless steels.The term biofilm is generally used for communities of microorganisms embedded in an organic polymer matrix (e.g. exopolysaccharides), produced by the microorganisms themselves) and adhering to a surface, irrespective of the environment in which they develop. Stainless steels are widely used for different applications in seawater such as the oil and gas, desalination and marine energy industries. The presence of a biofilm on passive alloys such as stainless steels or nickel-based alloys can strongly enhance the cathodic reactions, and shift their open-circuit potential (OCP) to the noble direction.
Differences between temperate and tropical sites in terms of electrochemical behavior (e.g. open-circuit potential and cathodic current for oxygen reduction). One difference is critical temperature for biofilm ennoblement. Results are discussed in terms of risk for crevice corrosion for stainless steels in tropical seas.
Via the testing of six generically different insulation materials, the study has tried to identify factors in an insulation material that are more influential on corrosion rates of carbon steel.
Corrosion significantly impacts safety, availability and sustainment costs of U.S. Air Force (AF) systems and equipment. System downtime due to corrosion maintenance decreases the availability of systems to perform their national defense mission and drives the need for more aircraft and associated logistics tail. In addition, the AF spends about $5.5 Billion per year, about 21 percent of the annual AF maintenance budget, on corrosion maintenance.
The paper will cover the construction method (based on Random forest algorithms), the first results. We will see the enhancements of the model by injecting more data and modifying mathematical rule, and how it will be able to integrate a new decision support tool.
Extensive and increased collocation of high voltage AC (HVAC) electrical transmission lines, coupled with advances in coating technology, has resulted in the emergence of the possibility of transfer of electrical energy from the HVAC line to paralleling utilities through electrical induction. That transfer of energy can result in safety risks for personnel, as well as corrosion risks for below grade assets. In order to mitigate those risks, operators ground the induced AC using grounding electrodes, typically consisting of bare copper cabling or zinc ribbon.
Erosion is one of the major threats of the pipeline integrity1 when it’s transporting liquid hydrocarbon products with solid particles. The erosion process decreases the effective wall thickness and therefore reduces the capacity of the pipeline to contain the pressured product. This can induce serious consequences including property, health and safety, environment, and business costs.
Today, the push to find more environmentally friendly solutions for paints and coatings has become very important. Paints contain volatile organic compounds (VOCs), that contribute to ground level ozone and smog and can be harmful to human health and air quality. VOC limits for formulated coatings have been instituted by local governments to meet the highest air quality standards. One such regional regulation set a limit of 100 g/L for industrial maintenance coatings in the South Coast Air Quality Management District (SCAQMD) of Southern California in 2007.
Computerized maintenance painting management programs are used to inventory painted items, maintain historical coating data, optimize the scheduling of painting activities, and develop budget estimates for the work. While the sophisticated programs are quite effective, their true benefit is not realized unless someone takes ownership of the program, updates the data every few years, and uses the wealth of planning information that is available.
Corrosion control of buried assets usually involves a double shield: a coating system as a physical insulation barrier, and a cathodic protection system as an additional ad hoc defense. Detection of a corrosion spot at the coating defect stage is the only way to identify the threat before significant metal loss occurs. Furthermore, detection of defects in the coatings of such assets is especially important, since large defects, if left unrepaired, will not only leave the asset locally prone to corrosion, but also drain and weaken the cathodic protection effectiveness for the entire structure. Therefore, identification and characterization of coating anomalies is critical for the integrity of buried assets.