Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
Biofuels are renewable energy resources to replace fossil fuels since the latter are depleting and their application lead to serious environmental impacts.1 Fast pyrolysis is an industrial approach to convert a larger amount of raw biomass into bio-oils in a timely fashion. However, their poor qualities, such as low thermal stability, high water and acid contents, and low heating value, make them not ready f to be as transportation fuels directly.2,3 Moreover, their high water content and acidity can introduce corrosion concern during handling, storage , transportation and upgrading.4
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The high temperature and chemical composition of the geothermal fluid results in corrosion damage of drilling equipment, well casing and other components made of steel and iron alloys used in geothermal power production. This corrosive nature of the geothermal environment decreases the service life and increases the need for maintenance of geothermal power plants and geothermal wells. The main reasons for the corrosion of components are hydrogen sulfide (H2S) and carbon dioxide (CO2) present in geothermal system.
External corrosion in uninsulated pipelines is normally able to be prevented by cathodic protection (CP). Generally, external corrosion on buried pipelines cannot occur if CP current is getting onto the pipe. CP is an electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is concentrated at the anode and suppresses corrosion of the cathode (pipe) in the same cell. For instance, to make a pipeline a cathode, an anode is attached to it.
CUI (Corrosion under insulation) refers to localized corrosion under thermal insulations, which pose integrity risks to the hydrocarbon facilities. 1 CUI is reportedly a driver behind 40-60% of failures in the facility piping. Smaller-sized piping (i.e., diameter < 4”) are even more prone to CUI, whereas reportedly 81% of failures in small-sized piping are due to CUI. 2 CUI-related failures and associated efforts comprise 10% of a facility’s maintenance budget. Management of CUI risks has always been challenging as it involves maneuvering numerous governing factors. The key driving factor behind CUI is the aerated moisture that comes from soaked thermal insulations.
Corrosion under thermal insulations namely CUI (Corrosion under insulation) is among the key damage mechanisms which poses integrity risk to the hydrocarbon facilities. CUI is reportedly known as the reason behind 40-60% of failures in the facility piping whereas small bore piping (i.e., NPS < 4”) are even more sensitive to CUI failures, where up to 81% of reported failures in small-sized piping are known to be from CUI. Monetary spending to inspect and fix CUI-related failures cost 10% of overall maintenance budget in a typical medium-sized oil refinery. CUI risk is influenced by numerous operational and environmental factors which impedes its management in a typical AIM (Asset integrity management) program.
Petrochemical facilities and refineries consist of many miles of above ground piping that transports product between processing and storage units. These pipes are either supported at ground level or in multi-story pipe racks on varying types and sizes of supporting structures. A common problem these structures create is corrosion and erosion at the junction between the pipe and the support, which reduces the remaining wall thickness of the pipe and compromises the integrity of the entire system.
A previous paper presented by the authors at SSPC 2015 demonstrated the futility and folly of attempting to use accelerated corrosion testing as a tool for predicting real world corrosion performance. The effect of corrosion was shown to be governed by the type of ions and the concentration of oxygen in the corrosion environment. By understanding these two factors, accelerated corrosion testing can, however, be used as an indicator of performance which may be encountered in the real world.
Marine coating systems installed aboard commercial and military vessels are exposed to extremely aggressive environmental conditions during maritime operation. A key element in prolonging the useful life of any ship, both commercial and military, lies in the selection and installation of cost-effective corrosion control methods and materials at newbuild.
Utility scale solar array construction projects continue to grow in number annually. Large open spaces with consistent UV exposure often make excellent locations for solar array fields, however these sites do not always provide ideal soil conditions for the steel H beam pile supports which are embedded into the ground.
Silicone room temperature vulcanizing (RTV) polymer based coatings were designed with maintenance, and extending asset design life in mind. This technology can be tailored to be used as the backbone for a wide variety of coating applications by taking advantage of the inherent properties of RTV silicone.
Walk into the cathodic protection classroom or field with a strong math, electricity, and chemistry foundation gained from this course. This course provides a thorough review of basic math, chemistry, and electrical fundamentals through step-by-step examples, self-study practice problems, and downloadable job-aids.
This 2-hour short course includes audio narration with transcripts and on-demand viewing and bookmarking capabilities that enable you to complete the course as your schedule allows.
Purchase of this course includes a one-year subscription and is non-refundable. Students will have access to all course materials for a period of one year from the date of registration. All course work must be completed during this time period. Extensions or transfers cannot be granted.
Shielding of cathodic protection (CP) by pipeline coatings poses a serious threat to pipeline integrity. The difficulty in pipeline coating selection to avoid shielding is that the same properties that make a pipeline coating a good corrosion mitigation material can also lead to CP shielding. The key to proper coating selection is to select a coating that has the necessary properties to provide good corrosion protection but also one that, when disbondment and failure occurs, fails in such a way to allow effective cathodic protection.