Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Optimisation of maintenance and inspection programmes through risk analysis can be used for coating maintenance. The risk picture can be described by 1) Scenario, 2) Frequencies, and 3) Consequences, for protective coatings. A systematic approach for optimisation of the maintenance programme has been developed.
Presence of surface rust is normally assumed to decrease the performance of coatings. In this work various maintenance coatings were applied on pre-rusted steel cleaned by two different power tools: rotating disc and rotating steel brush.
This paper discusses a classic example where the facts surrounding the failure of a lining system were ignored and undue reliance was placed on laboratory analysis. This “blind faith” in analytical data without a sound causal theory caused the failure analysts to disregard or overlook the obvious.