Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
NEPCOAT stands for the Northeast Protective Coating Committee and is comprised of tenmember Departments of Transportation, from Connecticut, Delaware, Massachusetts, Maine,New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. NEPCOATwas founded in 1992 and has for thirty years evaluated and qualified paint systems for use onbridges, both for shop-applied new steel, and field-applied totally cleaned existing steel.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Metallizing in NH was a coating used only sparingly in the past at critical locations on two major bridges. Its greater use was severely limited by the lack of qualified applicators, absence from bridge fabricator operations, and overall excessive cost. This picture changed dramatically with the impetus of the new metallized Memorial Bridge project and the massive investment in metallizing equipment at a large local bridge fabricator that made metallizing possible for this bridge. The successful use and ten-year performance of the thermal spray coating (TSC), i.e. metallizing, on this bridge has had a significant impact on metallized New England bridges tofollow.
As traditional reserves deplete onshore and offshore, the oil industry is moving into increasingly deeper waters and harsh environments in the pursuit of hydrocarbons. As the industry drills deeper, the challenges that face infrastructure increase markedly with the longstanding issues of corrosion. One of the major challenges to corrosion management is the extreme pressure and temperature.
Alloy 600 and SS 316L are common materials used for structural components of pressurized water reactors (PWRs). However, as PWRs age, incidents of general corrosion and stress corrosion cracking (SCC) are more likely to be found in the structural components. One of the major material degradation problems is primary water stress corrosion cracking (PWSCC).
In the Oil and Gas plant industry, coating plays an important role in increasing added value for the purpose of providing product functionality and protecting products as the final stage of all work.In particular, heavy-duty coating refers to a coating system that can withstand severe corrosive environments such as sea, underwater, and coastal industrial areas, and has a durability of at least 20 years for structures that are difficult to repair environmentally and economically.
Cast Iron with its ancient history, traced back to 6th century BCE1, has been used for centuries to anything from manhole covers & fire hydrants to bridges. However, the development of Spheroidal Graphite Cast Iron (SGCI) or Nodular Cast Iron, in the 1940’s, with resulting improvement in mechanical properties such as ductility and fracture toughness, paved the way for further growth in industrial usage of cast iron.2 The material has been adopted by several industries such as automotive-, nuclear-, and wind turbine industry. During the last decade, SCGI has gained increased attention as construction material for subsea equipment in offshore oil & gas production, mainly competing with welded and bolted steel assemblies.
The SCC of stainless steels has been an issue facing light water reactors (LWRs) since 1965 when sensitized components failed in the Dresden boiling water reactor (BWR). Numerous experimental efforts have been performed to characterize the SCC of stainless steel in LWRs in the last several decades and many of these efforts have been reported at each of the prior Environmental Degradation of Materials Conferences. Recent research has focused on characterizing SCCGR dependencies in hydrogen deaerated water. Testing of cold worked (CW) stainless steel has shown that heavily CW stainless steel has Arrhenius temperature functionality with a thermal activation energy of roughly 75 kJ/mol . In moderately to low CW stainless steel, a departure from Arrhenius temperature functionality is observed due to high temperature SCCGR retardation (HTR). This paper further extends this research and describes tests which were conducted to characterize the SCCGR temperature dependency of sensitized and CW 304 SS in hydrogenated water.
This paper will focus on the use of composites to repair and protect piping in the facility environments. Composites as a preventative option for location of soil-to-air interfaces and pipe support locations and the ability of composites to repair bends and restore the structural integrity of the facility piping will be discussed. Testing and currently in use examples will be used to show the benefit of composites in facility integrity systems, including the ability to keep the facility safe while avoiding a costly shutdown
Corrosion is a ubiquitous phenomenon, which can have massive impacts on the functioning of industrial assets. The threat of corrosion is exacerbated in situations where regular corrosion inspections are difficult. The Virtual Corrosion Engineer (VCE) Project within Shell is intended to offer a solution to this problem by automatically assessing the corrosion rates and threat levels in assets due to a variety of corrosion mechanisms. The VCE system has been deployed in an asset progressively since 2019.
Stress Corrosion Cracking, or SCC, is part of a group of cracks commonly known as Environmental Cracking. Additional types of cracks found in this group include corrosion fatigue and hydrogen embrittlement. It is generally known that SCC requires three factors to be present to form and continue growing. The first is a susceptible material. In the world of pipelines, carbon steel is quite susceptible to corrosion when buried but is typically protected from this threat utilizing a combination of external coatings in cathodic protection.
Alkali-silica reaction (ASR) induced damage is one of the main causes of degradation in reinforced concrete (RC) structures, especially in the high relative humidity environmental conditions. ASR involves complex dissolution-precipitation reactions in concrete that take place in the presence of alkali ions, silica, and moisture. Alkali ions diffuse into the porous aggregate through the concrete pore solution and startthe dissolution of silica by breaking silanol and siloxane bonds in the reactive aggregates.
Gas Oil Hydrotreating Unit uses a catalytic hydrotreating process employing a selective catalyst and a hydrogen-rich gas stream to decompose organic sulfur, oxygen and nitrogen compounds contained in the feed. The products of these reactions are the contaminant free hydrocarbon, along with H2S and NH3. Other Treating reactions include halide removal and aromatic saturation. Reactor effluent is cooled in series of Combined Feed Exchangers followed by REAC for product separation. The reactor effluent system is prone for corrosion and fouling due to salting of NH4HS and NH4Cl. Most of the failure analysis studies and literature available in public domain regarding reactor effluent corrosion deals with the corrosion in the REAC and its outlet piping.