Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Stress Corrosion Cracking, or SCC, is part of a group of cracks commonly known as Environmental Cracking. Additional types of cracks found in this group include corrosion fatigue and hydrogen embrittlement. It is generally known that SCC requires three factors to be present to form and continue growing. The first is a susceptible material. In the world of pipelines, carbon steel is quite susceptible to corrosion when buried but is typically protected from this threat utilizing a combination of external coatings in cathodic protection.
In 2015, composite repair materials were used for the first time in an extensive pipeline crack repair testing program. Since that time, multiple test programs have continued to show the functionality of using a carbon fiber, epoxy composite repair system to significantly slow or deter crack growth in axially oriented cracks or crack-like features. To further build onto this successful testing, CSNRI, in conjunction with Williams Pipelines and ADV Integrity, has received pipe spools with SCC that were removed from service for testing purposes. These samples are repaired with the Atlas repair system, cycled, and then pressurized to burst while continuous strain gauge measurements are made on the SCC colonies.This paper will first provide a brief overview on the theory of how composite materials can be used to provide a permanent repair for standard pipeline SCC defects. The test results will then be discussed with a focus on strain-based results compared between three samples: A baseline sample with no repair, a repair performed at no pressure, and a repair performed at a pressure equivalent to 50% SMYS. All test samples have SCC ranging from 40-60% through-wall. The test results clearly show a reduction in peak-to-peak strain when repaired. The sample installed with pressure additionally shows the impact of installing at pressure, namely that the peak-to-peak strain values are similar when compared with the repair installed at 0 pressure.
Stainless steels have been used for a wide range of applications in seawater. They are known to be susceptible to localized corrosion under given conditions. This is often the limiting factor for the use of stainless steels for seawater applications.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Erosion, a mechanical process during which material is removed from the pipelines and other flow-containing equipment, can occur when solid particles such as sand are carried by the flow. Erosion is more critical when there is a change in the flow direction, such as particle-laden flows in elbows and tees.
While experimentation is a possible approach to obtain erosion rates, the conditions under which tests could be performed are limited in some respects.
High temperature sulfidation (or sulfidic) corrosion of steel by sulfur species in crude oil has long been known to damage refinery equipment. Corrosion engineers have been using prediction curves derived from field corrosion data to estimate rates of sulfidation corrosion. However, a significant inaccuracy is often encountered in these estimations because of the extensive diversity in molecular structures of sulfur compounds in crude oils.