Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Metallizing in NH was a coating used only sparingly in the past at critical locations on two major bridges. Its greater use was severely limited by the lack of qualified applicators, absence from bridge fabricator operations, and overall excessive cost. This picture changed dramatically with the impetus of the new metallized Memorial Bridge project and the massive investment in metallizing equipment at a large local bridge fabricator that made metallizing possible for this bridge. The successful use and ten-year performance of the thermal spray coating (TSC), i.e. metallizing, on this bridge has had a significant impact on metallized New England bridges tofollow.
This is the story of the largest movable bridge replacement in NH’s history, a compelling account of new ideas to match and exceed an historically significant 90-year old lift bridge in design, style, and innovation with today’s unique high-performance features designed to last a century.These bridge features include a first-in-the-world structural design, and the first use of thermal spray zinc coating in New Hampshire and Maine, whose pewter-colored finish blends with the naval and marine river setting, and whose success has encouraged the growth of metallizing in shops and on bridges in New England over the past decade.
As traditional reserves deplete onshore and offshore, the oil industry is moving into increasingly deeper waters and harsh environments in the pursuit of hydrocarbons. As the industry drills deeper, the challenges that face infrastructure increase markedly with the longstanding issues of corrosion. One of the major challenges to corrosion management is the extreme pressure and temperature.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Cast Iron with its ancient history, traced back to 6th century BCE1, has been used for centuries to anything from manhole covers & fire hydrants to bridges. However, the development of Spheroidal Graphite Cast Iron (SGCI) or Nodular Cast Iron, in the 1940’s, with resulting improvement in mechanical properties such as ductility and fracture toughness, paved the way for further growth in industrial usage of cast iron.2 The material has been adopted by several industries such as automotive-, nuclear-, and wind turbine industry. During the last decade, SCGI has gained increased attention as construction material for subsea equipment in offshore oil & gas production, mainly competing with welded and bolted steel assemblies.
Fiber reinforced polymer (FRP) and other polymeric materials are used in many ways to reduce and manage corrosion damage for industrial, infrastructure and municipal applications. It is common practice to use the term “resin” for polymers in these materials. This paper uses polymer interchangeably with resin. This paper will also only consider glass fiber reinforcements.