Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The brake system is a core component of cars, motorbikes, bikes, airplanes etc.. Its main task is to modulate the speed of moving vehicles by converting the kinetic energy into heat.1,2 In the case of modern cars or motorbikes, the speed modulation can be performed by using the so-called disc-brake system.1,2,3,4,5,6 This generates the braking torque by forcing two brake pads against a disc by the means of a caliper.2,3,5,6 In the case of cars, the disc and the caliper are enclosed within each wheel and, as a consequence, can be exposed to corrosion phenomena, mostly related with atmospheric or environmental conditions.1,3,7,8
The work reports for the first time galvanic current measurements for the friction material – backplate couple. In particular, two configurations including different friction materials and a steel-based backplate are considered. Measurements are performed using Linear Sweep Voltammetry (LSV) and Zero Resistance Ammeter (ZRA) –based techniques and allow to: 1) investigate the interplay between galvanic currents and localized corrosion events at the interface between each investigated friction material and the corresponding backplate; 2) correlate the corrosion potential of stand-alone materials with that of multilayered specimens; and 3) identify friction materials which show a sacrificial anode behavior with respect to the backplate.
Variability of operation and practices can lead to mechanical integrity issues of equipment. A similar case was observed when an external UT survey was conducted on a biocide storage tank that showed localized areas of metal loss in the tank wall. The tank was opened for inspection and extensive internal corrosion damage was observed mainly in the form of large isolated pits. Three potential corrosion mitigation options were evaluated: upgrading the tank material from coated carbon steel to 316 stainless steel, installing a non-metallic lining, or keeping using the coated carbon steel and changing the operation practices. Each mitigation option was evaluated based integrity, feasibility, and economic factors. It was found that keeping the coated carbon steel and adjusting the operation practices can ensure the integrity of the tank while lowering the required economical investment. As such, a new operation manual was issued for the biocide storage tanks that ensured that the corrosion inducing environments are avoided.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
When it comes to a bridge structure with a serviceable Organic Zinc / Epoxy / Urethane (OZ/E/U) coating system, there is no golden answer on the most cost-effective maintenance painting strategy. Depending on the severity and amount of corrosion and coating breakdown on the structure, planned maintenance surface preparations range from spot power tool cleaning and spot painting to a full SSPC-SP 10 media blast and full recoating operation.
This paper provides an overview of the electrochemical passivation process, history of the BurlingtonSkyway, description of the installation process, treatment results and up to 30 years of monitoringresults for the structure.