Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
This paper provides an overview of the electrochemical passivation process, history of the BurlingtonSkyway, description of the installation process, treatment results and up to 30 years of monitoringresults for the structure.
The Burlington Skyway consists of two parallel high-level bridges that allow Great Lakes cargo ships tocross under the Queen Elizabeth Way highway in Burlington, Ontario. The first bridge opened to traffic in 1958 and was the site of the first Electrochemical Chloride Extraction (ECE) project in North America. Years of leaking joints had allowed salt-contaminated water to penetrate the large concrete piers with chlorides to initiate corrosion of the reinforcing steel.The ECE process uses an impressed current power supply and a temporarily installed anode system to electrochemically treat reinforced concrete structures. As with any impressed current system, the ECE process generates hydroxyl ions at the steel surface and reduces the concentration of chlorides around the steel such that the structure is left in a passive, non-corroding condition at the end of the treatment process.
In the oil and gas industry, thermally sprayed aluminum (TSA) coatings are commonly used, primarily, to reduce anode demand in cathodic protection systems and impart some degree of sacrificial protection in the topsides and splash zone areas. The use of TSA coatings has advantages in systems where long service life is required. TSA coatings are also used to reduce the formation of calcareous deposits, normally a combination of CaCO3 and Mg(OH)2, on heat exchanger piping.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Variability of operation and practices can lead to mechanical integrity issues of equipment. A similar case was observed when an external UT survey was conducted on a biocide storage tank that showed localized areas of metal loss in the tank wall. The tank was opened for inspection and extensive internal corrosion damage was observed mainly in the form of large isolated pits. Three potential corrosion mitigation options were evaluated: upgrading the tank material from coated carbon steel to 316 stainless steel, installing a non-metallic lining, or keeping using the coated carbon steel and changing the operation practices. Each mitigation option was evaluated based integrity, feasibility, and economic factors. It was found that keeping the coated carbon steel and adjusting the operation practices can ensure the integrity of the tank while lowering the required economical investment. As such, a new operation manual was issued for the biocide storage tanks that ensured that the corrosion inducing environments are avoided.
The brake system is a core component of cars, motorbikes, bikes, airplanes etc.. Its main task is to modulate the speed of moving vehicles by converting the kinetic energy into heat.1,2 In the case of modern cars or motorbikes, the speed modulation can be performed by using the so-called disc-brake system.1,2,3,4,5,6 This generates the braking torque by forcing two brake pads against a disc by the means of a caliper.2,3,5,6 In the case of cars, the disc and the caliper are enclosed within each wheel and, as a consequence, can be exposed to corrosion phenomena, mostly related with atmospheric or environmental conditions.1,3,7,8