Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The aim of this study was to determine the mechanism of atmospheric corrosion of zinc in areas of local NaCl contamination and to define the driving force of spreading of electrochemical reactions using Scanning Kelvin Probe (SKP).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The long-term performance of three different automotive surface coatings (physical barrier, sacrificial, and hybrid) was predicted using electrochemical impedance spectroscopy (EIS). Corrosive conditions faced by vehicles in the field, such as deicing, can be simulated using accelerated methods. The coating/metallic substrate interface experiences various degradation mechanisms during exposure to harsh conditions. In this work, real-time measurements were performed via EIS testing to characterize the degradation and corrosion mechanism of coating and substrate. After the real-time measurements, a mathematical framework based on mechanistic and machine-learning concepts was developed. Phase angle plots from EIS were utilized to monitor the state of the coating during steady-state conditions and train the Artificial Neural Network (ANN) as an arrangement of Time Series Prediction (TSP). The transport processes, activation, and interface interaction with the corrosive environments were analyzed as a corrosion mechanism and were predicted via the ANN model. The ANN has predicted the coating performance for several years, and the experimental results have been validated by employing scanning electron microscopy (SEM) imaging. Each coating condition has been validated via SEM imaging at the initial state and when the coating protection is activated.
The brake system is a core component of cars, motorbikes, bikes, airplanes etc.. Its main task is to modulate the speed of moving vehicles by converting the kinetic energy into heat.1,2 In the case of modern cars or motorbikes, the speed modulation can be performed by using the so-called disc-brake system.1,2,3,4,5,6 This generates the braking torque by forcing two brake pads against a disc by the means of a caliper.2,3,5,6 In the case of cars, the disc and the caliper are enclosed within each wheel and, as a consequence, can be exposed to corrosion phenomena, mostly related with atmospheric or environmental conditions.1,3,7,8
This paper will explain how to find CUI (Corrosion under Insulation within a refinery through proper inspection and, damage mechanisms, avoiding premature structural failure due to corrosion.
This paper reviews current observations from the offshore oil fields and presents the potential biotic and abiotic mechanisms to magnetite formation.
High temperature sulfidation (or sulfidic) corrosion of steel by sulfur species in crude oil has long been known to damage refinery equipment. Corrosion engineers have been using prediction curves derived from field corrosion data to estimate rates of sulfidation corrosion. However, a significant inaccuracy is often encountered in these estimations because of the extensive diversity in molecular structures of sulfur compounds in crude oils.
Design of waterborne acrylic and styrenated acrylic resins for metal protection requires balancing a multitude of often competing properties. One classic example is attempting to maintain hardness and block resistance while simultaneously reducing the volatile organic content (VOC) demand of waterborne paints. During a recent new product development project, another recurring tradeoff emerged – attempting to deliver a robust adhesion profile while maximizing corrosion resistance.