Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Variability of operation and practices can lead to mechanical integrity issues of equipment. A similar case was observed when an external UT survey was conducted on a biocide storage tank that showed localized areas of metal loss in the tank wall. The tank was opened for inspection and extensive internal corrosion damage was observed mainly in the form of large isolated pits. Three potential corrosion mitigation options were evaluated: upgrading the tank material from coated carbon steel to 316 stainless steel, installing a non-metallic lining, or keeping using the coated carbon steel and changing the operation practices. Each mitigation option was evaluated based integrity, feasibility, and economic factors. It was found that keeping the coated carbon steel and adjusting the operation practices can ensure the integrity of the tank while lowering the required economical investment. As such, a new operation manual was issued for the biocide storage tanks that ensured that the corrosion inducing environments are avoided.
As facilities in the oil and gas industry age with time, corrosion mitigation and control become ever more important. Failure of any part of processing equipment is likely to entail production loss, loss of containment, environmental impact, and/or human risk. Internal corrosion failures represent one of the major risks to a process equipment and piping. Chemical treatment is one of the main corrosion mitigation methods that are used in the industry. These chemicals include corrosion inhibitors, scale inhibitors, oxygen scavengers and biocides. As these chemicals are used to mitigate corrosion, it is sometimes forgotten that in their neat form, they can be corrosive if not used, stored, and maintained properly. As such, the concepts of corrosion management should be applied to chemical injection systems as well.
Corrosion management includes correct selection of materials, protection from corrosion, and corrosion monitoring and inspection. This should be carried out at the stage of design and then optimized and improved upon while under operation. In some instances, changes can happen to a facility that renders previous corrosion management practices ineffective. Under such circumstance, it is important to reapply corrosion management concepts and choose the most effective options to rehabilitate the system.
The above ground storage tanks in the refinery are experiencing bottom plate underside (soil) corrosion at a high rate of 1mm/year. Results: Failure of 4 tanks within a period of 9 years. Observations, details of the CP survey, tests, results and forward path taken up.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
AC interference analysis between high voltage AC (HVAC) powerlines and buried pipelines is a matter of current interest due to the growing number of right-of-ways shared between powerline and pipeline infrastructure. This is only expected to increase as the worldwide energy demand grows considerably over the next 30 years,1 and stricter environmental regulations and policies are applied. Therefore, AC interference will continue to be an issue of concern for powerline and pipeline operators to protect the public, environment, and maintain asset integrity.
The brake system is a core component of cars, motorbikes, bikes, airplanes etc.. Its main task is to modulate the speed of moving vehicles by converting the kinetic energy into heat.1,2 In the case of modern cars or motorbikes, the speed modulation can be performed by using the so-called disc-brake system.1,2,3,4,5,6 This generates the braking torque by forcing two brake pads against a disc by the means of a caliper.2,3,5,6 In the case of cars, the disc and the caliper are enclosed within each wheel and, as a consequence, can be exposed to corrosion phenomena, mostly related with atmospheric or environmental conditions.1,3,7,8