Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The brake system is a core component of cars, motorbikes, bikes, airplanes etc.. Its main task is to modulate the speed of moving vehicles by converting the kinetic energy into heat.1,2 In the case of modern cars or motorbikes, the speed modulation can be performed by using the so-called disc-brake system.1,2,3,4,5,6 This generates the braking torque by forcing two brake pads against a disc by the means of a caliper.2,3,5,6 In the case of cars, the disc and the caliper are enclosed within each wheel and, as a consequence, can be exposed to corrosion phenomena, mostly related with atmospheric or environmental conditions.1,3,7,8
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In this work selected corrosion phenomena occurring in disc brake systems are reviewed. For the first time, a galvanic series, summarizing the electrochemical performance of several brake system components, is presented and case studies are discussed as well. The case studies focus on corrosion issues which are related with the three major components of a car disc brake system, namely the: a) Aluminum caliper; b) brake pads and associated friction materials; and c) cast iron disc. It is shown that: a) the parameters for the anodization of Aluminum calipers should be carefully tuned on the basis of the specific Al alloy, in order to obtain an anodic layer capable to withstand the galvanic coupling existing between the caliper and nobler components; b) friction materials composition must be optimized in order to avoid shear adhesion phenomena between brake pad and disc due to the growth of corrosion products at the interface between the two; and c) it is possible to mitigate the corrosion of cast iron brake discs by modulating the carbon morphology, alloy elements concentration and microstructure. The manuscript demonstrates that electrochemical techniques are of fundamental importance in order to pursue a corrosion-resistance-oriented design of future braking systems for automotive applications.