Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Protective coatings are widely used for shielding metal surfaces against service-induced degradations. Immersion-grade coatings protect the metal surfaces by hindering the interaction of steel (i.e., substrate) with service thereby providing corrosion and even abrasion resistance. Coatings nowadays are the most efficient method to shield metals and thus has been widely engaged among various protective techniques.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A large-scale refinery is being set up in Africa. The refinery includes the construction of tank farms consisting of 150+ above ground storage tanks with diameter varying from 4.1m to 92m for the storge of crude oil, intermediate and products. Tanks are constructed on various types of tank foundations such as Ring beam foundation, sand pad foundation with fire bricks and without fire bricks.
The Enbridge External Corrosion Prevention team (ECP) is developing an Integrated External Corrosion Management (IECM) process by which management of external corrosion control systems can be optimized whilemaintaining asset integrity and safety. IECM is intended to provide a methodology by which operators can move from a traditional reactive approach to a state-of-the-art proactive strategy commensurate with industry expertise and technology. Here we discuss a case study intended to demonstrate and assess the outcomes of IECM. The subject is a 12-inch diameter crude oil pipeline located in North America. Results of the process reveal opportunities for improvement and efficiencies in operation and maintenance (O&M).
As oil and gas operators ramp up their efforts to reduce their carbon footprint, more and more renewable energy projects will be constructed adjacent to pipeline infrastructure and facilities. This can compromise the corrosion protection systems designed to protect the existing pipeline infrastructure and can result in both AC and DC interference risks. There is very little literature related to the cathodic protection (CP) system impacts and interference risks of renewable energy projects on pipeline infrastructure, and how best to mitigate the risks.
Organic coatings protect the underlying metallic substrate against corrosion by acting as a barrier to corrosive species such as water, ions, and oxygen. Unfortunately, coatings might contain defects and could degrade or disbond under some environmental conditions, resulting in favorable pathways for such corrosive species.
Barrier protection is one of the modes by which intact coatings provide protection to metal substrates through a reduction of the transport of materials, ions, or charge.
Picture for Challenges and Solutions with Polymer, Polymer-Like Carbon, and Diamond-Like Carbon Coatings Against Geothermal Scaling and Corrosion Picture for Challenges and Solutions with Polymer, Polymer-Like Carbon, and Diamond-Like Carbon Coatings Against Geothermal Scaling and Corrosion.
UNS N07718 (Alloy 718) is a precipitation-hardened Nickel alloy widely used for various components in oil and gas production service where a combination of high strength, good cracking and corrosion resistance is needed. API 6ACRA provides heat treatment windows and acceptance criteria for wrought Alloy 718 in these oil and gas production environments, in which the heat treatment is intended to obtain high strength desired for applications in combination with good environmental performance.
Additive Manufacturing (AM) is increasingly becoming a source of design, fabrication of complex components where machining from wrought material would be very cumbersome or introduced complicated welding processes.
Carbon steel exposed to aqueous CO2 environments can be conducive to the formation of naturally protective corrosion products, namely iron carbonate (FeCO3). Understanding how FeCO3 develops across a range of conditions is a critical step in enabling the optimization of corrosion products as a natural form of corrosion mitigation. To date, most studies investigating FeCO3 development focus on near-neutral pH solutions conducive to fast precipitation while test pressures are generally atmospheric to simplify in situ electrochemical measurements.
The Wafra Joint Operation (WJO) Oilfield is located in the central-west part of the Kuwait-Saudi Arabia Neutral Zone. The Wafra oilfield reserves were first discovered and wells drilled in 1953 and production in commercial quantities began in 1954. This field produces two types of crude oil, Ratawi (light oil) and Eocene (heavy oil), with average water cut of 80-85%. During operation, the production wells produce the oil emulsion through mostly coated flowlines to sub-centres (SC) where the sour oil, water and gas are separated. The facility has two gathering fields: Eocene and Ratawi. Eocene has 2 phase separation, whilst Ratawi has 3 phase separation.
The production of hydrocarbons from a reservoir involves the drilling and interaction of a well with a reservoir, which initiates the natural flow of the hydrocarbons from the virgin reservoir to the surface. However, as production continues, the reservoir pressure is depleted, which results in a reduction of the hydrocarbon production rate due to reservoir maturity. This is usually accompanied by increased water-cut levels and a corresponding decrease in gas production, which may not only reduce but completely stop the flow of fluids from a well.
The Permian Basin is a shale sedimentary basin approximately 250 miles wide and 300 miles long. It is located in western Texas and southeastern New Mexico. Chevron has been active in the Permian Basin through its legacy companies since the early 1920s.
Steel rebar in concrete is in a passive state due to the high pH of concrete. The hydroxyl (OH-) ions in highly alkaline concrete pore solution act as inhibitors and promote passive film stability, while chloride ions lead to passive film breakdown. Leckie and Uhlig1 first explained the counter effect of inhibitor action with chloride concentration. They proposed a competition between the inhibitor and chloride anions for adsorption on the passive surface.