Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
As oil and gas operators ramp up their efforts to reduce their carbon footprint, more and more renewable energy projects will be constructed adjacent to pipeline infrastructure and facilities. This can compromise the corrosion protection systems designed to protect the existing pipeline infrastructure and can result in both AC and DC interference risks. There is very little literature related to the cathodic protection (CP) system impacts and interference risks of renewable energy projects on pipeline infrastructure, and how best to mitigate the risks.
As oil and gas operators ramp up their efforts to reduce their carbon footprint, more and more renewable energy projects will be constructed adjacent to pipeline infrastructure and facilities. As part of this effort, a large North American pipeline Operator, with over 150,000 km of combined liquids and gas pipelines, is installing three solar farms connected into existing pump stations as a pilot project. The Operator also has seven additional solar sites already in progress and plans to install many more in multiple phases over the next few years.These solar farms can involve the installation of hundreds to thousands of bare steel piles along with additional grounding, which could result in tens to hundreds of amps of cathodic protection current drain and compromise the corrosion protection of the Operator’s assets. Additionally, the solar farm could potentially introduce alternating current (AC) and direct current (DC) interference risks, both under normal operation and fault conditions. This paper explores the various risks, and discusses cathodic protection (CP) design, monitoring and interference mitigation strategies that can be implemented to address these risks.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Utility scale solar array construction projects continue to grow in number annually. Large open spaces with consistent UV exposure often make excellent locations for solar array fields, however these sites do not always provide ideal soil conditions for the steel H beam pile supports which are embedded into the ground.
While performing cathodic protection surveys, carrier pipe and casing potential readings are typically recorded at the same test station location near the end of a casing. Comparing these potentials should reveal a difference between the cathodically protected pipe versus an unprotected and electrically isolated casing. The difference in potentials is one of available tests to determine whether a casing may be electrically shorted to the carrier pipe. The pipe-to-electrolyte and casing-to-electrolyte potential comparison is usually the initial “screening” method.