Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Mild steel specimens (API 5L X65) were pretreated to form a pyrrhotite layer on the surface using high temperature sulfidation in oil, then exposed to a range of aqueous CO2 and H2S corrosion environments, leading to initiation of localized corrosion.
Due to the electrical conductivity of pyrrhotite it was hypothesized that its presence in the corrosion product layer on a steel surface could lead to localized corrosion. Mild steel specimens (API 5L X65) were pretreated to form a pyrrhotite layer on the surface using high temperature sulfidation in oil. The pretreated specimens were then exposed to a range of aqueous CO2 and H2S corrosion environments at 30 and 60C. X-ray diffraction data showed that the pyrrhotite layer changed during exposure; in an aqueous CO2 solution it underwent dissolution while in a mixed CO2/H2S solution it partially transformed to troilite, with some mackinawite formation. This led to initiation of localized corrosion in both cases.
Propagation of the localized attack was enhanced due to a galvanic coupling between the pyrrhotite layer and the steel surface. The intensity of the observed localized corrosion varied with solution conductivity (NaCl concentration); a more conductive solution resulted in higher localized corrosion rates consistent with the galvanic nature of the attack propagation.
Key words: Pyrrhotite, H2S corrosion, CO2, localized corrosion, troilite, XRD
To evaluate the applicability of the tubing steels, the corrosion behavior and stress corrosion cracking of tubing steels (P110S, P110-13Cr and duplex stainless steel 2205) were investigated under different H2S partial pressures and temperature.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A comprehensive parametric study was performed using a small-scale laboratory setup with the aim of investigating the occurrence of localized corrosion of mild steel in marginally sour environments.
Experiments were carried out in a 7.5L autoclave with two combinations of CO2 partial pressure and temperature and different H2S concentrations. Corrosion behavior of specimens was evaluated using electrochemical measurements and surface analytical techniques.