Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Mild steel specimens (API 5L X65) were pretreated to form a pyrrhotite layer on the surface using high temperature sulfidation in oil, then exposed to a range of aqueous CO2 and H2S corrosion environments, leading to initiation of localized corrosion.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
AC corrosion of structures under cathodic protection (CP) is a major concern for pipelines. This work investigates the effect of soil constituents - earth alkali elements Ca and Mg - believed to have a large influence on the precipitation of hydroxides and carbonates in front of a coating damage.
Microbiologically influenced corrosion (MIC) has been an emerging concern in the oil and gas industry. Pipeline networks of different services, such as sour crude, sweet crude, water, and gas are subjected to various corrosion types, including MIC from microbial activities present within these systems. Such microbial activities can hinder the pipeline integrity and lead to metal deterioration.
Microbiologically influenced corrosion (MIC) is one of the leading causes of equipment and pipeline failure in oil and gas industries. Cost-effective MIC management requires routine monitoring of microbial activities, periodic assessment of microbial risks in various operational systems, and accurate diagnosis of MIC failure. Traditionally, MIC diagnosis has been dependent on cultivation-based methods by inoculating liquid samples containing live bacteria into selective growth media, followed by incubation at a certain temperature for a pre-determined period of time. The conventional culturing techniques have been reported to severely underestimate the size of the microbial populations related to metal corrosion, among many inherited weaknesses of these techniques. As a result, accurate diagnosis of MIC failure is challenging because the conventional techniques often fail to provide a critical piece of evidence required for a firm diagnosis, i.e., the presence of corrosion-causing microorganisms in the failed metal samples. In this paper, we described applications of molecular microbiology methods in diagnosing MIC in a crude oil pipeline and crude processing facility. Molecular microbial analyses have provided a solid piece of evidence to firmly diagnose the MIC in a crude oil flow line, a stagnant bypass spool, and a global valve bypass pipe. The presence of a high number of corrosion-related microorganisms in upstream pipelines poses a high risk to downstream crude processing facilities for microbial contamination and corrosion failure in these facilities. An effective MIC management program should include routine monitoring of microbial activities and risk assessment, and effective mitigation program, such as scraping and biocide treatments.
Nickel based Alloy 600 is used within the nuclear industry in structural components due to its good mechanical properties and general corrosion resistance, however upon exposure to primary water environments at elevated temperatures it can be affected by Primary Water Stress Corrosion Cracking (PWSCC). Nickel Based Alloy (NBA) susceptibility to PWSCC is dependent on a number of factors that include material type, condition and microstructure, as well as fabrication method, and can be investigated by uniaxial initiation testing in a primary water environment, where specimens are held at constant load under an elevated temperature.
The reverse osmosis (RO) membrane fouling is a significant challenge faced by oil and gas plants, impacting their operational efficiency and overall productivity. The primary cause of RO membrane fouling in oil and gas plants can be attributed to the presence of various foulants, including suspended solids, organic matter, scaling minerals, and biological agents. Among these foulants, microbial activity plays a significant role in accelerating membrane fouling.