Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
UNS N08935 is a new versatile super austenitic alloy with extreme pitting resistance as indicated by its pitting resistance equivalent number (PREN) of 52. It can be used in a broader temperature range than superduplex and hyperduplex stainless steels, offers good weldability and is more cost-effective than Nickel-based materials which make the grade a good candidate for O&G applications, refineries, and chemical industries.1,2
Twisting and U-bending of heat exchanger tubing are common practices employed to enhance operating conditions and plant design. Both methods result in cold plastic deformation which can have an impact on the mechanical and corrosion properties of the material. This paper is focused on the effect of the cold plastic deformation on austenitic stainless steel (UNS N08935) and the necessity of subsequent solution annealing. The material qualification was evaluated by mechanical and corrosion properties using results of hardness, pitting corrosion resistance (ASTM G48 Method C), and stress corrosion cracking in sour conditions (NACE TM0177). The results will be able to demonstrate if the cold work deformation on alloy 35Mo will affect the use of this alloy in heat exchangers applications in the refinery industry in the coldworked condition without the need of re-solution annealing.
Geothermal Energy is currently engineered as an “always on” baseload supply, due to the limited flexibility to throttle the well without scaling and fatigue issues, and it is engineered for maximal efficiency at this output level. Scaling is a major problem in geothermal plants, particularly in cases where the geothermal fluid composition and plant operation make it difficult to control scaling. In such areas, particularly where scale inhibitors cannot be employed, the formation of scales can make the process less efficient and in extreme cases can lead to unexpected shutdown.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Environmentally Assisted Cracking (EAC) of gas transmission lines constitute about 2.6% of the total number of significant incidents recorded in the U.S. Pipeline and Hazardous Materials Administration (PHMSA) database [1]. For the hydrocarbon liquid pipelines, the EAC-related incidents constitute about 1%. Although Stress Corrosion Cracking (SCC) incidents are a relatively small percentage of significant incidents, it is important to predict the location and rate of growth of SCC because of the potential for catastrophic consequences from the growth of undetected cracks.
External corrosion on buried pipelines can result in gradual and usually localized metal loss on the exterior surface of failure coating, resulting in reduction of the wall thickness of the metallic structure. Indirect technologies, such as DC basis (i.e. DCVG, CIPS) have been able to detect and pinpoint two conditions in the pipeline, intact and holiday (active surface or coating anomaly) with good confidence. Classic DC methodologies monitor and characterize the state of the coating and effectiveness of cathodic protection by using transfer function principle (i.e. resistance). The formation of an electrochemical cell, such as buried coated pipeline with cathodic protection (steel in electrolyte) is formed at macro scale conditions [1-2]. The expected damage evolution of the coated pipeline includes the electrolyte (soil+water) uptake within the coating