Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In a 1998 study, costs for corrosion in USA were estimated to be about 276 billion US-$. One way to reduce this gigantic amount of money is to use modern stainless steels and nickel alloys with excellent resistance to various forms of corrosion in corrosive environments like seawater, brines, oil and sour gas wells.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Nickel alloys UNS N06625, UNS N06059, UNS N06022, UNS N08825 and one Special Stainless Steel (UNS N08031) are overlay welded in 1 to 3 layers on carbon steel. The dilution is measured and results of pitting corrosion in an immersion test with “Green Death” solution will be discussed.
An advanced grade of super-austenitic stainless steel with a reduced content of nickel offers a significant economic advantage over nickel-base CRA’s. As the alloy is readily fabricated by conventional techniques, it is an excellent candidate for a variety of applications in the chemical, petrochemical, mining, oil and gas, and refining industries.
Sulfuric and hydrochloric acids are among the most common chemicals produced.in the process industry. Nickel alloys have been a traditional material of choice. This paper will review the alloys available for this service as well as identify the temperature limits and other conditions that should be considered when selecting an alloy.
Exhaustive testing has been conducted and reported previously on UNS N06055 in corrosion 2014 paper number 4223. These data support the use of UNS N06055 for nuclear applications where resistance-to-cracking during fabrication and resistance to primary water stress corrosion cracking (PWSCC) in service are of paramount importance.
UNS N08935 is a new versatile super austenitic alloy with extreme pitting resistance as indicated by its pitting resistance equivalent number (PREN) of 52. It can be used in a broader temperature range than superduplex and hyperduplex stainless steels, offers good weldability and is more cost-effective than Nickel-based materials which make the grade a good candidate for O&G applications, refineries, and chemical industries.1,2
This paper presents work in follow-up to the previous study. It is focused on UNS1 N07718, UNS N09925, UNS N07725 and UNS N09946. A series of incremental step load tests of compact tensile specimens were conducted to measure the fracture toughness during testing and cracking was monitored by the Electric Crack Growth Monitoring technique. A new engineering technique, referred to as statistical fractography, was used to investigate the fracture surface morphology and extract from it the fracture properties of the alloys.
Several industrial applications including the chemical industry and oilfield technology involve frequently halide-containing streams at elevated temperatures, that challenge the pitting corrosion resistance of metallic materials. Pitting susceptibility becomes not only a reject criterion for materials selection during the design stages of engineering components used in these applications. It also constitutes a significant limiting factor to the service life of these components once in service. Therefore, the characterization of the pitting corrosion resistance of metallic materials including the influence that operational factors can have on material’s susceptibility is crucial.
This standard practice provides technical and quality assurance guidelines for handling and installing nickel alloy, stainless steel, and titanium linings in air pollution control equipment (e.g., FGD systems, ducts, and stacks). The concepts and guidance included in this standard may also be useful in other process industries, but may require modification to meet the requirements of a particular process. This standard is intended to be a basis for preparation of a specification to be agreed on by contracting parties for the installation of wallpaper lining in air pollution control and other process equipment. It is the responsibility of users of this standard to determine the suitability of specific procedures, metals, and alloys for particular applications.