Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
UNS N08935 is a new versatile super austenitic alloy with extreme pitting resistance as indicated by its pitting resistance equivalent number (PREN) of 52. It can be used in a broader temperature range than superduplex and hyperduplex stainless steels, offers good weldability and is more cost-effective than Nickel-based materials which make the grade a good candidate for O&G applications, refineries, and chemical industries.1,2
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Use of corrosion inhibitors (CI) to protect metallic equipment, especially carbon steel pipelines from corrosion has long been an established, effective, economic, and hence globally accepted technique. The oil and gas industry has been using CIs to protect the pipelines under various exposure conditions including sour and sweet services . Complete understanding of corrosion mechanisms under sour conditions and protecting pipeline steel under such conditions has always been a challenging task due to the complexity of such systems.
The oil and gas industry is currently operating numerous fields that contain high concentrations of CO2 and H2S at elevated temperatures. Under such conditions, internal corrosion control has emerged as a significant challenge, leading to severe material failures in production wells and posing a substantial threat to oil and gas infrastructure.
Internal corrosion of pipelines represents a critical risk during the initial stages of production, with a reported occurrence of above 9,000 failures between 1990 and 2012.