Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
External corrosion on buried pipelines can result in gradual and usually localized metal loss on the exterior surface of failure coating, resulting in reduction of the wall thickness of the metallic structure. Indirect technologies, such as DC basis (i.e. DCVG, CIPS) have been able to detect and pinpoint two conditions in the pipeline, intact and holiday (active surface or coating anomaly) with good confidence. Classic DC methodologies monitor and characterize the state of the coating and effectiveness of cathodic protection by using transfer function principle (i.e. resistance). The formation of an electrochemical cell, such as buried coated pipeline with cathodic protection (steel in electrolyte) is formed at macro scale conditions [1-2]. The expected damage evolution of the coated pipeline includes the electrolyte (soil+water) uptake within the coating
The energy transportation network of the United States consists of over 2.5 million miles of buried pipelines. It is of prime importance the integrity of the metallic assets due to degradation in soil conditions because of their constant exposure to the aggressive, dynamic, and heterogeneous environment. This degradation process, involves a sequence of process starting with the coating damages/failures and the following electrochemical reactions. External corrosion can result in gradual and usually localized metal loss on the exterior surface of failure coating, resulting in reduction of the wall thickness of the metallic asset. Indirect technologies, such as DC basis have been able to detect and pinpoint two conditions in the pipeline, intact and holiday (active surface or coating anomaly) with good confidence. In this work we consider different levels of corrosion surface severity when a coating holiday (anomaly) exists. Different X52 metallic samples were characterized by using DC polarization and AC impedance to distinguish the differences in terms of capacitive and surface corrosion severity when the metallic samples get a coating failure.
This case study involves an NPS 36, 107 km long pipeline (Pipeline A) installed in 2016. The subject pipeline is collocated with an NPS 30 pipeline constructed in 1999 (Pipeline B), for the entire route, and two additional pipelines near the start of its route (Pipelines C and D), all owned by the same operator.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
UNS S209101, also known as XM-19 by ASTM A2762, is a nitrogen-strengthened austenitic stainless steel with high strength and excellent corrosion resistance. Besides nitrogen (N) it also contains higher amounts of chromium (Cr), nickel (Ni), manganese (Mn), and a similar molybdenum (Mo) content compared with UNS S31603, as well as small additions of niobium (Nb) and vanadium (V). High contents of Cr, Mo and N confer this stainless steel high localized corrosion resistance. Mo, Mn and Cr increase the nitrogen solubility in iron alloys.
Corrosion in Mooring systems for permanently moored floating production units has been identified as a problem area by authorities as well as industry. A Joint Industry Project (JIP) initiated by the Bureau of Safety and Environmental Enforcement (BSEE) with participation from major global oil and gas operators as well as equipment suppliers was established in 2014 to review the problem area. 1 Studies performed as a part of this program have shown that especially mooring chains located in tropical waters have shown signs of rapid corrosion, both general and localized with corrosion rates significantly larger than those specified in design standards. Increased corrosion allowance, as well as increased inspection requirements, have been recommended and corrosion has been reported as the leading cause for pre-emptive replacement of mooring.