Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The cooling water system simulator is an automated pilot plant for evaluating anti-scaling, corrosion inhibitor and bio-fouling inhibitor chemicals in refinery cooling and bitumen extraction water systems which include heat exchangers and cooling towers. This paper describes the simulator's design, construction, modes of operation and commissioning.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Two successive leakages were reported in the heat exchanger composed of 8 rows of finned tubes of the convection section of the condensate stripper re-boiler. A comprehensive study (Failure Analysis) has been conducted to reveal the form of failure. The failure was recognized as erosion and cavitation damage.
Refining industry cooling systems are prone to many different corrosion deterioration mechanisms one of which is microbiologically influenced corrosion (MIC). The study resulted in the development of a comprehensive control and monitoring plan to safeguard the integrity of the system.
A polyethylene unit experienced a gas leak within a high pressure tube and shell heat exchanger. Failure analysis revealed that the tube wall loss was beneath residual deposits. Preventative measures and improvements in inspection & cleaning procedures are discussed.
Critical pitting temperature (CPT) for UNS S31266 was compared to UNS S31254 with the newly developed electrochemical method, modified ASTMG150 developed by K. Lund et al., using 3M magnesium chloride (MgCl2) instead of 1M sodium chloride (NaCl).
A case history of repeated failure of a gas/gas shell and tube heat exchanger in a gas dehydration unit in a gathering center. The investigation showed that corrosion products had resulted in the blockage.
Geothermal energy is an excellent source of renewable clean power generation, as well as for heating and cooling. Unlike other renewable energy sources, it is unaffected by local climate conditions. However, the heat exchangers used in geothermal power plants are under constant threat of scale formation and corrosion due to the harsh operational conditions to which they are exposed. Therefore, surface modifications to heat exchanger materials, for example through coatings, are necessary to improving the efficiency and durability of geothermal plant.v
This standard practice presents guidelines for preplanning for, recovering from, and repassivation after a low pH excursion in open recirculating water systems, no matter what the cause. The procedures presented in this standard inno way preclude the use of other procedures but are presented as best practices developed over years of experienceinavarietyofplants.Theprovisionsofthisstandardshouldbeappliedunderthedirectionofqualifiedwater-treatmentpersonnelfromwater-treatmentsuppliersand/orconsultants andplantpersonnel.
Establishment of criteria for the pilot-scale evaluation of the performance of cooling water additives under field-specific operating conditions.
There are hundreds of commercially available alloys in the market, which is utilized by various industries, including chemicals producers. However, depending upon the corrosiveness of the process conditions, choices of materials of construction can be limited. One of a highly corrosive condition is acidic chloride chemistry (like, hydrochloric acid) in which only a handful of alloys (like, Ni-Cr-Mo alloys) can provide a reasonable service life, which though depends upon the amount of chloride, operating temperature, and impurities level.
Equipment can have an important impact on the production at a refinery, petrochemical, or chemical plant. Change of equipment will often have a negative impact since it can disrupt the production with shutdowns, which will lead to production losses. In the long term, these short lifetimes for the equipment will cause many shutdowns, which will give a higher production cost. One example of equipment is the shell-and-tube heat exchanger.