Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Critical pitting temperature (CPT) for UNS S31266 was compared to UNS S31254 with the newly developed electrochemical method, modified ASTMG150 developed by K. Lund et al., using 3M magnesium chloride (MgCl2) instead of 1M sodium chloride (NaCl).
The super-austenitic stainless steel UNS S31266 is due to its optimum of alloying elements a suitable material for seawater applications as for example seawater cooled heat exchangers. Producing UNS S31266 as seamless tubes gives the possibility to build heat exchangers with both tubes and plates in UNS S31266. The super-austenitic stainless steel UNS S31254 also has excellent corrosion resistance in a variety of industrial environments.
In this study the critical pitting temperature (CPT) for UNS S31266 was compared to UNS S31254 with the newly developed electrochemical method, modified ASTMG150 developed by K. Lund et al., using 3M magnesium chloride (MgCl2) instead of 1M sodium chloride (NaCl). CPT-values measured by the modified ASTM G150-method were shown to be 10-20 °C lower than when using 1M NaCl. Also, the crevice corrosion resistance of UNS S31266 was compared to UNS S31254 measured in NaCl solution.
The average CPTmod in 3M MgCl2 for UNS S31266 was 86 °C and for UNS S31254 it was 66 °C. The CPTmod was thus 20 °C higher for the UNS S31266 seamless tubes compared to UNS S31254. The CCT in NaCl of UNS S31266 was approximately 85 °C and for UNS S31254 it was approximately 60 °C.
Key words: Heat exchanger, super-austenitic stainless steel, seawater, pitting corrosion, crevice corrosion, UNS S31266, UNS S31254
c
This work investigates unexpected leaks observed on several cracked admiralty brass tubes that failed after 7 years in operation. Both metallurgical and molecular microbiological methods were used to understand the root cause of these failures.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pitting failure boundary of duplex stainless steel under sour condition was investigated by electrochemical and immersion tests. Polarization measurements investigate the effect of temperature and H2S on the corrosion behavior.
Two super duplex stainless steels were investigated: a W-free (UNS S32750) and a 2.1 wt% W-containing (UNS S39274) grade. Goals: To study localized corrosion resistance of super duplex stainless steels and how W affects the same.