Search
Filters
Close

Products tagged with 'hydrogen embrittlement'

View as
Sort by
Display per page
	Picture for High Strength Austentitic Stainless Steels for Hydrogen Applications at High Strength
Available for download

High Strength Austentitic Stainless Steels for Hydrogen Applications at High Strength

Product Number: 51324-20780-SG
Author: Clara Herrera; Merlin Seifert
Publication Date: 2024
$40.00
Hydrogen can be the future energy carrier as it might offer a substitute for fossil fuels. However, it can degrade the mechanical properties of many materials, a phenomenon well known as hydrogen embrittlement (HE) that can lead to a catastrophic failure. Austenitic stainless steels (ASS), especially UNS S31603 with a minimum yield strength (YS) of 170 MPa (25 ksi), is frequently used for hydrogen applications due to its low susceptibility to HE compared with other ASSs. However, ASS cannot be used when high strength (YS > 500 MPa) is required. Nitrogen-strengthened (e.g. UNS S20910) and CrMn(NiMo)N austenitic stainless steels in strain-hardened condition show a YS higher than 758 MPa (110 ksi) and are resistant to HE when tested in 100 bar (10 MPa) H2 atmosphere at room temperature. This paper discusses the susceptibility of high strength austenitic stainless steels, UNS S20910 and CrMnNiMoN (18Cr-18Mn-4Ni-2Mo), in strain hardened-condition to HE at higher H2 pressure. Slow strain rate tensile tests (SSRT) were carried out in hydrogen atmosphere at 1000 bar (100 MPa) and room temperature. Both austenitic stainless steels exhibit YS > 758 MPa (110 ksi) and UTS > 900 MPa (130 ksi). UNS S20910 and CrMnNiMoN austenitic stainless steels are resistant to HE, showing a ductile fracture. Although CrMnNiMoN present a reduction in ductility, its relative reduction of aera is higher than 80 %. Their fracture mode is ductile, characterized by microvoids and dimples. UNS S20910 and CrMnNiMoN can be an option for high-pressure hydrogen applications when high strength is required.
Picture for High-strength Nickel Low Alloy Steels for Oil and Gas Equipment: ASTM A508 Grade 4N under cathodic protection and simulated sour environments.
Available for download

High-strength Nickel Low Alloy Steels for Oil and Gas Equipment: ASTM A508 Grade 4N under cathodic protection and simulated sour environments.

Product Number: 51320-14706-SG
Author: Andreas Viereckl, Esteban Rodoni, Zakaria Quadir, Garry Leadbeater and Mariano Iannuzzi, Yuta Honma
Publication Date: 2020
$20.00

Low alloy steels (LASs) combine relatively low cost with exceptional mechanical properties, making LASs commonplace in Oil and Gas equipment. However, the strength and hardness of LASs for sour environments and for applications that generate atomic hydrogen at the surface, e.g., cathodic protection, is limited to prevent different forms of hydrogen embrittlement (HE) such as hydrogen stress cracking (HSC) and sulfide stress cracking (SSC). As a result, the specified minimum yield strength (SMYS) of forged LASs for, e.g., subsea components, rarely exceeds 550 MPa (80 ksi), while the most common pipeline steels are API(1) X65 to X70, with a SMYS of 450 MPa (65 ksi) and 482 MPa (70 ksi), respectively. Moreover, ISO(2) 15156-2 restricts LASs to a maximum of 1.0 wt% Ni due to SSC concerns. The LASs that exceed the ISO 15156-2 limit have to be qualified for service, lowering their commercial appeal.  

In this work, the HSC resistance of the high-nickel (3.41 wt%), quenched and tempered (Q&T), nuclear-grade ASTM(3) A508 Gr.4N LAS was investigated using slow strain rate testing (SSRT) as a function of applied cathodic potential. Results showed that the yield strength (YS) and ultimate tensile strength (UTS) were unaffected by hydrogen, even at a high negative potential of -2.0 VAg/AgCl. HE effects were observed once the material started necking, manifested by a loss in ductility with increasing applied cathodic potentials. Indeed, A508 Gr.4N was less affected by H at high cathodic potentials than a low-strength (YS = 340 MPa) ferritic-pearlitic LAS of similar nickel content. SSRT results were linked to microstructure features, which were characterized by light optical microscopy (LOM), scanning electron microscopy (SEM) coupled to electron backscatter diffraction (EBSD). 

Picture for Hydrogen Embrittlement Susceptibility in Corrosion Resistant Materials for Fasteners
Available for download

Hydrogen Embrittlement Susceptibility in Corrosion Resistant Materials for Fasteners

Product Number: 51323-18763-SG
Author: Hans Husby, Inge Morten Kulbotten, Gisle Rørvik
Publication Date: 2023
$20.00