Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Alloys UNS N06600, N06690 and N08800 are used for steam generator tubes. Pitting corrosion was studied in 0.1 to 1 M chloride solutions with additions of thiosulfate ranging from 10-4 M to 10-2 M, at room temperature. The alloys were tested in solution annealed and thermally aged conditions.
Alloys UNS N06600, N06690 and N08800 used for steam generator tubes are prone to pitting corrosion in aqueous chloride-thiosulfate solutions. Pitting corrosion was studied in 0.1 to 1 M chloride solutions with additions of thiosulfate ranging from 10-4 M to 10-2 M, at room temperature. The alloys were tested in solution annealed and thermally aged conditions. Potentiodynamic curves showed an anodic peak at potentials slightly higher than ECORR in N06690 and N08800 for both metallurgical conditions. This peak results from a localized corrosion process that was named low potential pitting corrosion (LPPC), because pits repassivated when potential was scanned in the noble direction, and also to distinguish it from the conventional chloride pitting process observed at higher potentials. Cyclic potential scans up to potentials in the LPPC zone showed a hysteresis loop and repassivation potentials (ERP,LPPC) were very close to ECORR measured under deaerated conditions. According to the measured values of ERP,LPPC, N06690 was more resistant to pitting corrosion than N08800. Immersion tests in aerated 1 M NaCl with [Cl-]/[S2O32-] = 2000 led to pitting corrosion in all alloys, while in deaerated conditions, only N08800 was pitted.
Key words: N06600, N06690, N08800, localized corrosion, thiosulfate, chloride
Mild steel specimens (API 5L X65) were pretreated to form a pyrrhotite layer on the surface using high temperature sulfidation in oil, then exposed to a range of aqueous CO2 and H2S corrosion environments, leading to initiation of localized corrosion.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A comprehensive parametric study was performed using a small-scale laboratory setup with the aim of investigating the occurrence of localized corrosion of mild steel in marginally sour environments.
The objective of the present study was to evaluate the effect of alloying elements (Cr, Mo and Cu) on the corrosion behavior of low carbon steel in CO2 environments. Six samples were prepared with varying Cr content from 0 to 2 wt.% and with added 0.5 wt.% of Mo and Cu.