Search
Filters
Close

Save 20% on select titles with code HIDDEN24 - Shop The Sale Now

Laboratory Study of Internal Corrosion and Cathodic Protection Concerns Related to Offshore Monopile Structures

There have been several studies and publications over the past decade that clearly illustrate how initial assumptions about monopile interiors being perfectly sealed compartments were not correct in practice. Oxygen ingress through various points in the monopile contributes to persistent internal corrosion, and planned inspections are also opportunities to introduce fresh oxygen into the monopile. The replenishment of oxygen has been found to continue the corrosion reaction between the monopile wall and entrapped water.

Product Number: 51323-18894-SG
Author: Suresh Divi, Adam Rowe, Dan Efird
Publication Date: 2023
$0.00
$20.00
$20.00

Cathodic protection is one of the primary methods considered by designers and operators to protect internal surfaces within the immersed portion of offshore monopile foundations. There is an industry need to better understand the use of cathodic protection inside offshore monopile foundations.
A laboratory study was conducted to explore several aspects related to internal corrosion and cathodic protection of offshore monopile steel structures. Electrochemical and immersion corrosion tests were performed on structural steel in ASTM D1141 simulated seawater and a variety of temperature, aeration, and pH conditions in order to establish fundamental trends. The effect of these parameters on free corrosion rates, cathodic protection, acidification, and hydrogen gas generation were measured. The impacts of slight chromium additions and different sacrificial anode compositions were also explored.

Cathodic protection is one of the primary methods considered by designers and operators to protect internal surfaces within the immersed portion of offshore monopile foundations. There is an industry need to better understand the use of cathodic protection inside offshore monopile foundations.
A laboratory study was conducted to explore several aspects related to internal corrosion and cathodic protection of offshore monopile steel structures. Electrochemical and immersion corrosion tests were performed on structural steel in ASTM D1141 simulated seawater and a variety of temperature, aeration, and pH conditions in order to establish fundamental trends. The effect of these parameters on free corrosion rates, cathodic protection, acidification, and hydrogen gas generation were measured. The impacts of slight chromium additions and different sacrificial anode compositions were also explored.

Also Purchased