Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
A previously developed first principles based equation for potential attenuation along marine pipelines and risers with multiple, equally spaced, identical galvanic anodes was modified to accommodate an error in its derivation.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Laboratory tests of corrosion potentials of engineering materials under influence of additions of chlorine and chlorite were measured. Materials were an Al-alloy, 316L stainless steel, 6Mo stainless, 3 duplex stainless steels, CuNi, Ti & carbon steel.
The crevice corrosion resistance of duplex and super duplex stainless steels used for seawater pumps was evaluated by comparing the to results tests conducted using actual seawater with the behavior of the stainless steels in artificial seawater
How calcareous deposits formation in seawater influences the performance of a galvanic cathodic protection (CP) system in seawater. Coupling current measured. A resistance set between the cathode and the anode simulated circuit resistance of CP. Steel cathode potential over immersion time. Calcareous deposits analyzed by X-Ray Diffraction.
An advanced grade of super-austenitic stainless steel with a reduced content of nickel offers a significant economic advantage over nickel-base CRA’s. As the alloy is readily fabricated by conventional techniques, it is an excellent candidate for a variety of applications in the chemical, petrochemical, mining, oil and gas, and refining industries.
Experience has shown that stainless steels can suffer from Hydrogen Induced Stress Cracking (HISC) under cathodic protection in seawater. This paper presents results from a test program examining the HISC susceptibility of 25% Cr super duplex stainless steel (UNS S32750) at temperatures up to 1500C.
Superduplex stainless steels have been used in seawater systems since 1986 as castings and since 1990 as wrought product. The present paper describes some of the service environments commonly in use and the conditions that give rise to specific operating potentials. The limits of use under these conditions are described utilizing both laboratory and service experience.
Evaluation of metal-based structures has relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. This work uses surface chemistry and electrochemical techniques to interpret the chemical changes occurring on low carbon and stainless steel during atmospheric and accelerated corrosion conditions to find a correlation between its accelerated and long-term corrosion performance.
As part of a project to develop a database of seawater corrosion resistance including resistance to microbiologically-influenced corrosion (MIC) seawater, MIC exposure tests of five stainless steel alloys were undertaken for three and six month durations.
To examine the effect of Tungsten (W) on localized corrosion of 2 superduplex stainless steels (SDSS)- high & low-W. Both plain samples (pitting corrosion) and samples with artificial crevices (crevice corrosion) were exposed. Tests in 3.50-wt% NaCl solution or natural seawater. T= 30 to 90°C.
Crevice corrosion affects the integrity of stainless steels used in oil and gas components exposed to seawater. In this work, the crevice corrosion resistance of a 22-Cr duplex and a 25-Cr super duplex stainless steels (UNS S31803 and UNS S32750, respectively) were investigated.
This paper presents an expanded laboratory test database on critical corrosion modes for UNS R55400 pipe exposed to relevant oilfield production environments which include sour well fluid brines, a heavy chloride/bromide brine well completion fluid, injected methanol, organic acid- and HCl-based well acidizing solutions, and seawater.