Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The IDDP-1 well was the hottest flowing geothermal well in the world ~ 450 °C and 140 bar superheated steam that contained corrosive dissolved gases, H2S, CO2, H2, HCl and HF. The well had to be closed. Steel samples from down-hole were analyzed.
The IDDP-1 well was the hottest flowing geothermal well in the world producing 450 °C and 140 bar superheated steam. The IDDP-1 steam contained dissolved gases, H2S, CO2, H2, HCl and HF, which upon condensation became highly corrosive. Unfortunately, the well had to be closed after several months of discharging to due to failure in the master valves after leakage occurred in sampling valves due to corrosion. After shut-down small fragmented steel samples were retrieved from the well during down-hole camera inspection. Microstructural and chemical composition analyses were done on the samples with SEM and XEDS. The result showed that the samples have extensive corrosion damage, in the form of corrosion pits and internal micro-cracks and fissures. These are filled with corrosion products and are parallel to the surface. The chemical composition and microstructural analysis of the steel fragments indicate that they are from the API K55 carbon steel production casing of the IDDP-1 well. The corrosion damage was present deep into the material. The samples were etched for metallurgical analysis which revealed disappearance of pearlite close to the micro-cracks and fissure. High Temperature Hydrogen Attack (HTHA) is believed to be the cause of the decarburization of the steel and the corrosion damage of the samples.
Key words: Hydrogen damage, Carbon steel, geothermal, superheated steam, High Temperature Hydrogen Attack (HTHA)
This paper describes some of the materials and process challenges facing geothermal energy developers targeting efficiency improvements and extremes of aggressive geothermal fluid chemistries and temperatures.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A commercial corrosion inhibitor was used to quantify the level of corrosion mitigation of K55 casing material in simulated acidic geothermal electrolyte at different pH values and inhibitor concentrations.