Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
In natural seawater, microorganisms can fix, grow and develop on practically any surface, including stainless steels.The term biofilm is generally used for communities of microorganisms embedded in an organic polymer matrix (e.g. exopolysaccharides), produced by the microorganisms themselves) and adhering to a surface, irrespective of the environment in which they develop. Stainless steels are widely used for different applications in seawater such as the oil and gas, desalination and marine energy industries. The presence of a biofilm on passive alloys such as stainless steels or nickel-based alloys can strongly enhance the cathodic reactions, and shift their open-circuit potential (OCP) to the noble direction.
The corrosion risk for stainless steel components is not the same in all seawaters, with more failures generally reported in tropical seas. In this study, the influence of biofilm on electrochemical behavior and corrosion resistance of passive films of high-grade alloys was studied in different seawaters, including temperate seawater (France-Brest, North Atlantic Ocean), tropical seawater (Malaysia-Kelatan, Meridional China Sea), and intermediate conditions in terms of temperature (Brazil-Arraial do Cabo, South Atlantic Ocean). The stabilized open-circuit potentials and the polarization behavior of high-grade stainless steels were measured as function of temperature in all the tested field marine stations, providing quantified data and direct comparison on the biofilm-enhanced corrosion risks. Significant differences were measured in tropical and in temperate seawaters in heated conditions above 30°C. In parallel to the monitoring of biofilm-induced depolarization, crevice corrosion of 8 high grades passive alloys was studied with the use of crevice formers specifically developed for tube geometries. Duplex, superduplex, hyperduplex and 6Mo stainless steels tubes have been evaluated together with Ni-based alloys. The corrosion results are discussed regarding the monitored biofilm-induced depolarization measured in the different test conditions.
Corrosion under thermal insulations namely CUI (Corrosion under insulation) is among the key damage mechanisms which poses integrity risk to the hydrocarbon facilities. CUI is reportedly known as the reason behind 40-60% of failures in the facility piping whereas small bore piping (i.e., NPS < 4”) are even more sensitive to CUI failures, where up to 81% of reported failures in small-sized piping are known to be from CUI. Monetary spending to inspect and fix CUI-related failures cost 10% of overall maintenance budget in a typical medium-sized oil refinery. CUI risk is influenced by numerous operational and environmental factors which impedes its management in a typical AIM (Asset integrity management) program.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pipelines have been the main transportation pattern of oil and gas because of their safety and economy, which are considered as the lifeline of offshore oil and gas transportation. With the booming development of offshore oil industry, the frequency of pipeline leakage is also increasing. Corrosion is one of the important factors due to some characteristics such as operating environment, service life and transportation medium, etc., which damages the integrity of the pipeline and damage the normal operation of pipelines. Furthermore, leakage accidents caused by pipeline corrosion have occurred all over the world, accounting for 70~90% of total accidents, which has caused huge economy losses and catastrophic environmental damage.
The high temperature and chemical composition of the geothermal fluid results in corrosion damage of drilling equipment, well casing and other components made of steel and iron alloys used in geothermal power production. This corrosive nature of the geothermal environment decreases the service life and increases the need for maintenance of geothermal power plants and geothermal wells. The main reasons for the corrosion of components are hydrogen sulfide (H2S) and carbon dioxide (CO2) present in geothermal system.