Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Pipelines have been the main transportation pattern of oil and gas because of their safety and economy, which are considered as the lifeline of offshore oil and gas transportation. With the booming development of offshore oil industry, the frequency of pipeline leakage is also increasing. Corrosion is one of the important factors due to some characteristics such as operating environment, service life and transportation medium, etc., which damages the integrity of the pipeline and damage the normal operation of pipelines. Furthermore, leakage accidents caused by pipeline corrosion have occurred all over the world, accounting for 70~90% of total accidents, which has caused huge economy losses and catastrophic environmental damage.
Pipelines are an important part of offshore oil and gas field development facilities and the main means of gathering and transporting offshore oil and gas resources. However, pipelines are subject to deterioration and degradation in the corrosion media. Corrosion risk assessment and prediction is an effective way to avoid leakage of oil and gas field pipelines and facilities, ensure safe operation and save cost. Hence, in this study, a machine learning model with excellent predictive performance was constructed for corrosion rate, to provide an effective mean for processing complex corrosion data and to provide a useful tool for further exploration of submarine pipeline corrosion problems. Meanwhile, a method that can effectively and quickly evaluate the accuracy of corrosion rate prediction model was explored, which can be used as a reference to select the most appropriate and accurate Machine Learning (ML) model based on existing data.
Estimating corrosion growth rate for underground pipelines is a non-linear multivariate problem. There are many potential confounding variables such as soil parameters cathodic protection AC/DC interference seasonal / climate conditions and proximity to unique geographic features such as wetlands or polluted environments. The work presented provides an approach for estimating underground corrosion growth rates using a dataset of observations from a North American pipeline operator. Extensive geospatial data is utilized that has been obtained from public and private sources and extrapolated using Inverse distance weighted (IDW) interpolation. This work presents a model using IDW to estimate parameters involving soil interference geography and climate factors for any location in North America.Using this data this work then presents several different machine learning approaches including Generalized Linear Models eXtreme Boosted Trees and Neural Networks. All three provide an accurate estimation for corrosion growth rates for an underground asset at any latitude and longitude pair in North America. Each method comes with potential benefits and pitfalls specifically; trade-offs between model accuracy and transparency. This work presents a framework for comparing geo-spatial and machine learning estimates. Findings and a framework are provided for owners to assess how to think machine learning on their own assets.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
At present, there were ten common crossing modes in long-distance oil and gas pipelines[1,2]. There were six ways of tunneling, such as large excavation, horizontal directional drilling, shield tunnel, drilling and blasting tunnel, ramming pipe and pipe jacking. There were four ways of spanning methods, such as truss crossing, arch bridge crossing, suspension cable crossing and cable-stayed bridge crossing. Crossing by shield tunneling, as a pipeline laying method with high mechanization and automation, extensive applicable strata and high safety, has been widely used in recent years.
The corrosion severity of an environment is important for both design and maintenance of infrastructure especially in marine and costal environments. Corrosion can vary drastically depending on conditions such as temperature, humidity, salt loading, and rain events.1 The interplay between these variables is quite complex so a variety of indirect techniques for quantifying corrosion severity are typically used. One common method is the determination of corrosion rate by measuring the mass loss of steel coupons exposed in the field. Measuring the change in mass of the steel coupon as a result of the corrosion product being removed from the substrate can provide the rate of corrosion after a specific exposure time in the field.