Search
Filters
Close

Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!

Corrosion & Mechanical Properties of Nickel Based Alloy 825 Explosion Welded Plates for H2S Service

The total project study focused on six suction and discharge drums. Each of them was built with twohemispherical heads and a number of shells. The H2S service and Stress Corrosion Cracking (SCC) from this specific oil and gas field required the equipment to be cladded with Alloy 825 to protect them from corrosion.

Product Number: 51323-19123-SG
Author: O. Sarrat, H. Alves, J. Botinha, P. Maas
Publication Date: 2023
$0.00
$20.00
$20.00

The need for high-performing, corrosion-resistant alloys in oil and gas clad applications are increasing as more owner/operators move drilling operations offshore, into harsher conditions to tap petroleum reserves, which often contains more hydrogen sulphide (H2S).


Explosion Welding1 (EXW) a layer of corrosion-resistant alloys to carbon or low-alloy steel typically provides significant cost reduction for pressure vessels and other process equipment. Among all the existing nickel alloys, one specifically shows significant cost-benefit features: UNS N08825 (Alloy 825), a titanium stabilized Nickel-Iron-Chromium alloy. However, this nickel alloy is vulnerable to sensitization in a range of temperatures that is regularly used in equipment manufacturing processes.


NobelClad has partnered with VDM Metals to conduct a series of corrosion and mechanical tests throughout the manufacturing process to confirm that the cladding, head forming, vessel manufacturing, and lifecycle repair processes preserve the metals’ properties – both base and clad – from beginning to end. The study simulated and confirmed all heat treatments on the final clad product were successful.

The need for high-performing, corrosion-resistant alloys in oil and gas clad applications are increasing as more owner/operators move drilling operations offshore, into harsher conditions to tap petroleum reserves, which often contains more hydrogen sulphide (H2S).


Explosion Welding1 (EXW) a layer of corrosion-resistant alloys to carbon or low-alloy steel typically provides significant cost reduction for pressure vessels and other process equipment. Among all the existing nickel alloys, one specifically shows significant cost-benefit features: UNS N08825 (Alloy 825), a titanium stabilized Nickel-Iron-Chromium alloy. However, this nickel alloy is vulnerable to sensitization in a range of temperatures that is regularly used in equipment manufacturing processes.


NobelClad has partnered with VDM Metals to conduct a series of corrosion and mechanical tests throughout the manufacturing process to confirm that the cladding, head forming, vessel manufacturing, and lifecycle repair processes preserve the metals’ properties – both base and clad – from beginning to end. The study simulated and confirmed all heat treatments on the final clad product were successful.

Also Purchased
Picture for 11361 Processing and Fabricating Alloy 825 for Optimized Properties and Corrosion Resistance
Available for download

11361 Processing and Fabricating Alloy 825 for Optimized Properties and Corrosion Resistance

Product Number: 51300-11361-SG
ISBN: 2011 11361 CP
Author: Lewis Shoemaker and Jim Crum
Publication Date: 2011
$20.00
Picture for SCC of Alloy 825 High Cr Alloy 800 and Other Interesting Alloys in High-Temperature Water
Available for download

51313-02412-SCC of Alloy 825 High Cr Alloy 800 and Other Interesting Alloys in High-Temperature Water

Product Number: 51313-02412-SG
ISBN: 02412 2013 CP
Author: Peter Andresen
Publication Date: 2013
$20.00
Picture for The Sensitisation Behaviour of Alloy UNS N08825 After Heat Treatment as Used in Clad Materials
Available for download

The Sensitisation Behaviour of Alloy UNS N08825 After Heat Treatment as Used in Clad Materials

Product Number: 51317--9459-SG
ISBN: 9459 2017 CP
Author: Helena Alves
Publication Date: 2017
$20.00

The aim of this paper is to present recent standard test corrosion data obtained in laboratory for alloy UNS N08825 after post weld heat treatment in comparison with as delivered (soft annealed) material.