Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Data were collected to study the effect of an imidazoline based inhibitor on reducing CO2 corrosion of low carbon steel in erosive environments. Lower erosion-corrosion material loss was measured with inhibitor than with the protective iron carbonate scale.
Erosion-Corrosion behavior of carbon steel material was investigated under iron carbonate scale forming conditions in a CO2 saturated environment as it was impinged by CaCO3 and sand particles.
Experimental data were collected with the objective of studying the effect of an imidazoline based inhibitor on reducing CO2 corrosion of low carbon steel material in erosive environments. The erosivites of sand and CaCO3 particles were characterized for iron carbonate scale covered steel surfaces and for bare metal steel surfaces. Comparing CaCO3 and sand erosion data under dry and wet conditions, sand was found to be more erosive than CaCO3 particles. For the experimental conditions considered, the imidazoline based inhibitor provided greater corrosion protection to the bare metal carbon steel surface than the iron carbonate scale did. Consequently, lower erosion-corrosion material loss was measured with inhibitor than with the protective iron carbonate scale.
Key words: Iron Carbonate Scale (FeCO3), CO2 Corrosion, Erosion, Erosion-Corrosion, Sand, Calcium Carbonate Particles (CaCO3), Inhibited Erosion-Corrosion, Imidazoline based inhibitor
Pitting failure boundary of duplex stainless steel under sour condition was investigated by electrochemical and immersion tests. Polarization measurements investigate the effect of temperature and H2S on the corrosion behavior.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Degradation mechanisms experienced by a refinery’s RFCC catalyst cooler aeration piping system. Analysis of the most recent and a past failure determined the metallurgical and mechanical degradation mechanism(s) that led to these failures.
In this paper, the scaling mode at the early stage of carbon steel exposed to H2S environments with short exposure time were investigated. Corrosion exposure tests and linear polarization resistance (LPR) techniques were performed.