Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
The decomposition process of ancient marine species in the seabed for millions of years coupled with the presence of specific geological conditions such as high pressures and temperatures led to the formation of what is known today as fossil fuels. For this reason, they can be found either on the earth's surface where ancient seas were located or beneath the seabed. Considering that the ocean covers three-quarters of the Earth's surface the offshore oil and natural gas exploration entail an enormous economic and strategic benefit.1
Production chemical regulations in the North Sea oil and gas sector restrict the use of environmentally harmful substances and require chemical providers to replace such products with environmentally acceptable alternatives. Environmentally acceptable corrosion inhibitors that are used in oil and gas production are non-toxic, biodegradable, and have a low impact on the marine environment. Such inhibitors are designed to protect mild steel from the effects of corrosion in systems containing acid gas, organic acids, and the influence of temperature. In this work, two oilfields in the North Sea required the development of environmentally acceptable corrosion inhibitors, to replace environmentally harmful products. The new products were required to offer similar or improved efficacy to the incumbent inhibitors in a sour environment and to be cost-effective. Laboratory tests were performed to represent field conditions and ranged in temperature, H2S, and CO2 concentration as well as water cut and shear stress. Products were found to be effective to the corrosion rate limit of <4 mpy and with no pitting.
The drive towards renewable energy, requirement for reduction in fossil fuel consumption and emission of carbon dioxide has received substantial attention from governments and researchers worldwide during the last few decades [1]. The exploration of renewable sources of energy has been grouped into wind, geothermal, tidal and solar energy. Solar energy has shown great promise due to the abundant amount of energy reaching the Earth [2, 3]. Electricity generation from solar irradiation can be achieved by photovoltaic (PV) and photothermal conversion [4].
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
High strength low alloy (HSLA) steels are preferred for oil and gas pipelines due to their outstanding mechanical properties. Sulfide stress cracking (SSC) has been a major problem for the application of HSLA carbon steel because of the wet H2S environment which commonly presents in oil and gas industry. Several techniques are applied to the study of SSC of steels, including constant load test with smooth specimens and DCB testing.
Maintaining the integrity of oilfield equipment is essential to its safe operation and to maximize the efficiency of production. The integrity of oilfield equipment can rely on material selection and control of conditions, however, it is commonly maintained by the applications of chemical corrosion inhibitors (CI). Prior to use, these chemicals must be shown to perform as desired under the field conditions in question. To achieve this, chemicals are often evaluated using robust laboratory-based screening studies to identify potential candidates.