Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Corrosion and structural deterioration due to microbiologically influenced sulfate reduction and hydrogen sulfide gas oxidation to sulfuric acid are responsible for much of the expense related to santiatry sewage collection systems. This paper explains the mechanism of this biologically induced corrosion, its consequence, and methods to mediate it.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper describes a series of tests on two grades of stainless steels UNS S31600 (AISI 316) and UNS S66286 (ASTM A453 Gr. 660– Alloy A286) in simulated H2S-contining oil and gas service environments. The purpose of this study was to evaluate these materials for stress corrosion cracking.
This paper summarizes results of a joint industry program (JIP) to address ammonium bisulfide (NH 4 HS) corrosion in H 2 S-dominated alkaline sour waters typically found in refinery services such as the reactor effluent air cooler (REAC) systems of hydroprocessing units.
Electrochemical behavior of API X-80 steel materials in 3.5% wt. of NaCl solution containing different concentrations of H2S at different temperatures was studied. Potendiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were used to characterize the corroded API X-80 steel surface.
We have identified a class of inhibitory molecules that abrogate sulfidogenesis in oilfield produced fluids. Bottle tests and laboratory-scale bioreactors to mimic field conditions, found that very low doses of two versions of this class of compounds were found to effectively prevent H2S generation.
The objective of the testing was to establish the pH and temperature boundaries for use of stainless steels UNS S30403 and UNS S31603 in steam condensate. The tests had a parallel objective of demonstrating the extent and morphology of corrosion damage found under controlled conditions
An investigation into the effect of ppm concentrations of acetic acid on the electrochemical corrosion behavior of API 5L X65 carbon steel in a sour environment. Electrochemical techniques, Linear Polarization Resistance (LPR), Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS), were used.
Within a few weeks in a 2012 cathodic protection (CP) trial for monopiled windturbine structures in the North Sea, the seawater pH inside the monopile dropped from 8 to 5 and toxic gas (H2S and CO) alarms were energised. This paper explains why.
Novel compounds proven to reduce H2S production are compared to chemistries currently employed to prevent sulfidogenesis.
An advanced material of nickel-based alloy has been developed for Oil Country Tubular Goods (OCTG ) to be applied in sour conditions to injection of seawater into wells for enhanced oil and gas recovery.
Lab and field corrosion testing was completed on materials commonly used downhole in Steam Assisted Gravity Drainage (SAGD) to evaluate general corrosion rates, how they vary with well depth - as well as operating environment - to determine a dominating mechanism.
Corrosion behaviors on carbon steel - in presence of sulfate reducing bacteria (SRB) - were studied via weight loss methods and electrochemical tests including polarization curve and EIS measurements.