Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
The methodology developed involved initially flushing the facilities with less saline water to remove deposits and sediments, and subsequently treating the entire facility with a mixture of corrosion inhibitor, oxygen scavenger and biocide in brackish water.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This standard practice presents guidelines for preplanning for, recovering from, and repassivation after a low pH excursion in open recirculating water systems, no matter what the cause. The procedures presented in this standard inno way preclude the use of other procedures but are presented as best practices developed over years of experienceinavarietyofplants.Theprovisionsofthisstandardshouldbeappliedunderthedirectionofqualifiedwater-treatmentpersonnelfromwater-treatmentsuppliersand/orconsultants andplantpersonnel.
In the production of oil and gas, corrosion inhibitor (CI) is usually dosed into multiphase flows (oil/water/gas). The partitioning behavior of CI among the different phases is a critical factor for a successful application. Unreliable measurement of CI residuals can lead to inaccurate dosing, overtreatment, and higher operating costs.
An overview of the challenges encountered within the Wafra Oilfield during a long, unscheduled shutdown - along with chemical treatment solutions developed for the preservation of the downhole casing, tubing and pump assemblies left in place.
The Wafra Joint Operation (WJO) Oilfield is located in the central-west part of the Kuwait-Saudi Arabia Neutral Zone. The Wafra oilfield reserves were first discovered and wells drilled in 1954. This field produces two types of crude oil, Ratawi (light oil) and Eocene (heavy oil), with average water cut of 8085%. During operation, the production wells produce the oil emulsion through mostly coated flowlines to sub-centres (SC) where the sour oil, water and gas are separated. The facility has two gathering fields; Eocene and Ratawi. Eocene has 2 phase separation, whilst Ratawi has 3 phase separation. The sour gas is either flared or flows to the Main Power Generation Plant, whilst the oil is processed to the Main Gathering Center (MGC). The produced waters (PW) are routed to the Pressure Maintenance Plant (PMP).
The Wafra Joint Operation (WJO) Oilfield is located in the central-west part of the Kuwait-Saudi Arabia Neutral Zone. The Wafra oilfield reserves were first discovered and wells drilled in 1953 and production in commercial quantities began in 1954. This field produces two types of crude oil, Ratawi (light oil) and Eocene (heavy oil), with average water cut of 80-85%. During operation, the production wells produce the oil emulsion through mostly coated flowlines to sub-centres (SC) where the sour oil, water and gas are separated. The facility has two gathering fields: Eocene and Ratawi. Eocene has 2 phase separation, whilst Ratawi has 3 phase separation.
An emerging market driver in industrial water treatment is the move to more sustainable chemistries. Corporate sustainability goals are becoming more common and more stringent. Customers are turning to water treatment companies for innovative solutions that can satisfy their sustainability goals and not sacrifice performance or asset integrity. Indeed, a major trend in evaporative open cooling water treatment is to move away from heavy metals such as zinc and other environmentally questionable materials such as phosphates. Another area of cooling water that is in need of a sustainability refresh is closed cooling loops. The most widespread closed cooling treatment programs are based on combinations of nitrite, molybdate, and borate. All three of these chemicals have regulatory, discharge and/or SH&E concerns.
Corrosion continues to be a threat to the petroleum industry. It risks people’s lives, the environment, and assets integrity, in addition to the financial losses. In fact, the annual global cost of corrosion was estimated in 2013 to be around US$2.5 trillion (3.2% of 2013 global GDP). Of this amount, approximately 15-35% (i.e. US$375 to US$875 billion annually) can be avoided through proper corrosion control management and advanced mitigation technologies
Oilfield sulfide scale formation is peculiar to sour production scenarios, and for many oil and gas fields the issue of iron sulfide scale management downhole presents a major challenge. Historically iron sulfide scaling downwell have featured ‘reactive’ chemical dissolver interventions to recover well production once sulfide scale has deposited, and operators have published extensively on their experiences i.e. coiled tubing deployed dissolver technologies used in well clean-out treatments (Green, et.al. 2014, Wang et.al. 2017, Wang et.al. 2018, Buali et. al 2014).