Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Alloy UNS N07718 (hereafter abbreviated as 718) is one of the most versatile precipitation-hardened nickel-based corrosion-resistant alloys (CRAs) used for both surface and sub-sea components in oil and gas production service. API 6ACRA1 provides heat treatment windows and acceptance criteria for 718 in these oil and gas production environments, in which the heat treatment is intended to obtain high strength and to minimize the formation of δ-phase at grain boundaries. As pointed out in NACE MR0175 Part 32 (Table 1), field failures of 718 components in sour service are primarily related to stress corrosion cracking (SCC) at elevated temperatures and hydrogen embrittlement in the lower temperature range. The latter is specifically called galvanically induced hydrogen stress cracking (GHSC or GIHSC), which is typically caused by atomic hydrogen uptake from galvanic corrosion or cathodic protection (CP) when 718 is used with steel components in a seawater environment. CP is normally used to protect steel component from corrosion in subsea environments.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In any military base, there are numerous assets that need to be maintained. These assets can easily be traced from the fuel offload all the way through to the fuel dispenser. In between, this fuel travels through pipelines, into storage tanks, into pump stations, through filter separators, into fuel dispensers, and finally into either a track or non-track vehicle including jets. Therefore, it is extremely important to develop a system to inventory all assets and perform condition assessments on each to prevent degradation, corrosion, possible section loss of the metallic substrate, and loss of the liquid fuel. This paper will highlight some of the assets related to the fuels pipeline and related assets.
Duplex stainless steels (DSS) are widely used as structural alloys in marine and energy industries because of their excellent combination of mechanical properties and corrosion resistance. In light water reactor (LWR) power plants, these alloys find their applications in piping and internal structural components. With a currently designed lifetime of 40 years, these DSS components show little degradation in their mechanical properties. However, most current and future nuclear power plants are expected to operate beyond 60 years. This prolonged service period challenges the integrity of materials and components in the reactor. DSS component lifetime in the reactor is subjected to elevated temperatures, internal pressures, and corrosive environments.
Silicon is an important element of our Planet’s crust, which is transferred into water streams through dissolution.1 Hence, it is usually found as water-soluble silicate or colloidal silica in natural surface waters (sea, rivers, lakes), or underground waters. When such water is used for industrial purposes (eg. industrial cooling), silicate can enter the operating system and can pose a threat to its proper operation. The main reason is the solubility of amorphous silica, a product of the silicate polycondensation process.
Duplex stainless steels (DSS) are an attractive alternative to conventional austenitic 300 series. They are becoming more and more present in industrial applications requiring high mechanical properties combined with good corrosion resistance. UNS S32202 is a lean duplex grade designed to guarantee corrosion resistance superior to that of 304L in most environments and even equivalent to 316L in NaCl environment at room temperature. Its yield strength is twice as high as 304L and 316L allowing thickness and weight reduction in structural components. With low nickel content (2.5%) and no molybdenum addition, the impact of raw material price fluctuation is reduced. It makes UNS S32202 suitable for a high number of applications including public transportation, building & construction, watersystems, liquid storage and pulp&paper industry.
Fouling of equipment surface by unwanted materials is a well-documented problem inindustrial water systems.1 The foulants are generally classified into four categories: a)mineral scales i.e., calcium carbonate, calcium sulfate, calcium phosphate, magnesiumhydroxide, etc., b) corrosion products i.e., iron oxide, zinc oxide, copper oxide, etc., c)microbiological mass i.e., bacteria, algae, fungi, and other organisms, and d) depositsi.e., clay, silt, calcium-inhibitor salts, corrosion products, etc.
Inorganic scaling and fouling are undesirable processes occurring in process waters that are supersaturated with respect to scaling cations and anions. Mineral scaling is the result of nucleation and crystal growth phenomena that follow predictable pathways. This is because the mineral scales are composed of well-defined crystalline salts, the most common being calcium carbonate, calcium sulfate dehydrate (gypsum), metal sulfides, depending on the particular water chemistry and operational parameters (eg. temperature).
Potential measurements are often referred to as the ‘language’ of corrosion. They are the most fundamental process in the field of corrosion control. The purpose of potential measurements is to obtain a general idea of the ‘health’ of the cathodic protection system.
The impacts of marine biofouling to the maritime and naval communities, as well as the planet as a whole are well documented. Whether its increased fuel consumption and carbon emissions, transport of invasive species, or that it just plain looks bad, marine biofouling needs to be addressed more aggressively, be that timely removal of growth, or increased monitoring of hull condition to know when it’s time for removal. Current methods of removing growth are costly both in time and money, potentially environmentally unfriendly and risk impacting the health of the ship’s coating system.
Aluminum (Al) alloys are the most common non-ferrous metals used (approximately 25 million tons per year) and the second most commonly used metal alloy after steel1. Some of the properties of Al alloys that attribute to their worldwide use include lightness, thermal conductivity, electrical conductivity, suitability for surface treatments, and corrosion resistance. Al alloys are also combined with other metals/materials to achieve desired properties for specific applications. Al alloys can be joined to other materials with ease to enhance their combined properties with the following techniques: welding, bolting, riveting, clinching, adhesive bonding, and brazing1.
There are more than 47,000 publicly-owned roadway bridges in Canada.1 Over 25% of these bridges have main structural load bearing components made of structural steel (i.e., truss and steel girder bridges) based on data from the Ministry of Transportation, Ontario – MTO.2 According to Statistics Canada, the condition of approximately 40% of these bridges is rated as either very poor (unfit for sustained service), poor (increasing potential of affecting service), or fair (requires attention).3 It was reported by Koch et al.4 that corrosion is one of the main reasons that lead to structural deficiency of steel components of highway bridges. Especially in marine environments, steel bridges are at risk of high rates of corrosion, particularly beyond 15-20 years in service.5 This observation can be expanded to locations where the use of de-icing salt is common practice such as urban areas in North America. In addition, future climatic changes that are evident (i.e., change in temperature and relative humidity) may potentially affect the rate of corrosion-induced deterioration and affect the resistance of bridges against various load types throughout their life-cycle.
The corrosion of aircraft costs the U.S. Department of Defense billions of dollars annually and accounts for a significant portion of maintenance time and costs.1 Coatings are the most effective way to protect aircraft, but they have a finite lifetime and must be maintained or replaced before the underlying substrate is damaged by corrosion. Current aircraft maintenance practices call for coating inspections and maintenance based on elapsed time and not on measurements of coating health. Coating lifetime varies depending on the environmental stressors experienced in service, including temperature, humidity, and salt loading.