Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The corrosion of aircraft costs the U.S. Department of Defense billions of dollars annually and accounts for a significant portion of maintenance time and costs.1 Coatings are the most effective way to protect aircraft, but they have a finite lifetime and must be maintained or replaced before the underlying substrate is damaged by corrosion. Current aircraft maintenance practices call for coating inspections and maintenance based on elapsed time and not on measurements of coating health. Coating lifetime varies depending on the environmental stressors experienced in service, including temperature, humidity, and salt loading.
In this work, laboratory test methodologies that employ the combined environmental stressors of time of wetness and salt loading were used to excite corrosion failure modes of coating systems. Real-time measurements via interdigitated electrodes were correlated with reference panel images to monitor the evolution of coating damage. These data can give insights into the coating degradation process and can be used as parameters for developing a predictive coating condition model. A description of the sensors, electrochemical measurements, and methods for coating testing are reported along with the results of atmospheric tests using a range of conditions to produce coating degradation.
Although the form and function of a well-designed building are important, it is the long-term performance and durability of a building and its components that will be important to the owner(s) and occupants. Therefore, during the design of buildings, the selection of the appropriate materials and understanding the long-term performance of the specified materials exposed to various site-specific environmental conditions is critical in avoiding the potential “failure by design”. The case study presented will focus on the coating failure by design, that could have been avoided by the original design and construction team and resulted in costly litigation and eventually the complete removal of a key architectural element on two high-rise condominium buildings located along the Florida coastline
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Offshore is a very corrosive environment with a high corrosion rate. The offshore coating service life is relatively short and extremely expensive to apply maintenance coatings onsite. A new accelerated coating corrosion test method is proposed.
The use of duplex coating systems (hot dip galvanizing or thermal spray coating with one or more liquid-applied coatings) for long term protection of structural steel is becoming more mainstream in many industries. This paper describes the advantages of employing duplex coating systems as well as some important considerations for designers prior to specifying their use. It also highlights an ongoing initiative to help agencies more efficiently and effectively use duplex coatings on steel bridges by developing guidelines, standards, and other materials.