Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Wells in South Burgan field showed increase in water cut with drop in oil production. Some showed scale formation. Fluid sampling, radiography and ultrasonic thickness scanning were done. Recommendations were made for controlling internal corrosion and scaling. Work carried out is detailed.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Gypsum scale formation takes place directly on the surface of heat exchanger without bulk or spontaneous precipitation in the reaction cell. Polymeric and non-polymeric inhibitors have been examined for their effects on the rate of scale formation.
Metal sulfide mineral scaling, fouling and deposition are frequently encountered problems in geothermal systems. Their formation, crystallization and deposition occur principally because of their extremely low solubility, based on the low solubility product (Ksp). Among the metal sulfides that cause problematic issues, the most common ones are iron sulfide (FeS), zinc sulfide (ZnS), lead sulfide (PbS), and, less frequently, antimony sulfide(s) (Sb2S3 and Sb2S5). Zinc sulfide, for example, has a Ksp of 2·10-25 mol²/L², whereas for PbS, it is 1·10-28 mol²/L² (~ three orders of magnitude less soluble). ZnS can precipitate either as Sphalerite or Zinc Blende, and PbS commonly crystallizes as Galena. Mitigation of such ZnS and PbS precipitates and deposits can be achieved by chemical interventions, by the addition of organic chemical additives to the water. Herein, we report the inhibitory effects of phosphonate-based chemical additives for ZnS and PbS scales. These additives can inhibit formation of sulfide scale, and, significantly, prevent its deposition on metal surfaces. The efficiency of these additives is dosage-dependent, and relatively high inhibitor concentrations are needed for their inhibitory activity to take place. Possible mechanisms will be discussed focusing on inhibition and dispersion.
Tests for the evaluation of chemical-based gypsum removers. Includes survey form to acquire data used in this report. Mineral scale control & removing gypsum from oil and gas production systems.
Test methods designed to provide a relative and quantitative measure of the abilities of scale inhibitors to prevent the precipitation of solids, a necessary and critical stage in the formation of scale.
In this study, a plug flow reactor was built to investigate iron sulfide scale precipitation at various temperatures, pH and ionic strength conditions and two pieces of carbon steel C1018 coupons were put inside as reaction surfaces. The ferrous ion and total sulfide in collected effluent samples were measured to determine precipitation kinetics and solubility. The solid that formed on the steel surfaces were analyzed by Scanning Electron Microscopy (SEM/EDS) and X-ray Diffraction (XRD). The solubility data from this study and literature were collected and fitted by Matlab to build up a reliable FeS solubility prediction model. The experimental results show that mackinawite is the predominant precipitated scale and could be stable for a week at pH higher than 6.0. Iron sulfide precipitation is under diffusion control, accelerated by high temperature and ionic strength. At pH 6 – 7, the aqueous phase neutral species, such as 𝐹𝑒𝑆0𝑎𝑞, plays an important role in the solubility and precipitation kinetic. Based on this study, a new solubility model that combines Pitzer theory and ion-complexes (speciation of ferrous ion) has been developed for iron sulfide solubility calculation and scale prediction.
Polymers have played an essential role in development of technology, applied engineering, and materials. Metallic counterparts in medical, construction, energy, water treatment, and electronic applications, are often replaced by polymers. Their characteristics such as wide range of elasticity, strength and degradability make them ideal for numerous applications.
High temperature sulfidation is one of the oldest damage mechanisms in the refining process such as crude distillation unit, vacuum distillation unit and hydroprocessing unit. Since corrosion proceeds to general corrosion and occurs in a high temperature environment, it is a type of corrosion that can lead to a large fire explosion when a leak occurs.
In late 2021, several leaks were observed inside the waste heat boiler coil of the steam reformer furnace at the refinery. The leaks were located in the first row of tubes of the hot bank in the vertically-oriented coil, where boiler water inside the tubes is heated via waste heat of the reformer stack. The waste heat boiler coil has a design duty of 69.59 MMBtu/hr (~20.4 MW), with design pressures and temperatures of 1010 psig (6.9 MPa) and 700°F (371°C), respectively.