Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
High pressure and high temperature processes are present in a wide variety of industries and are often pushing the limits of common materials. As a result, these applications have required advanced materials as well as an improved understanding of the in-situ conditions. Furthermore, those processes have become more and more present in a wide range of industries such as upstream oil and gas (O&G) and power generation (in supercritical CO2 or molten salt nuclear reactors). The corrosion performance of existing and emerging materials to the extreme environments present in next generation power must be well characterized to ensure material integrity and reduce the risk of catastrophic failures due to environmentally assisted cracking, homogeneous corrosion, thermal oxidation, or other mechanisms.
Few in-situ corrosion monitoring techniques are available to use in high pressure and high temperature (HPHT) environments. This paper presents the outcome of the development of a technique based on optical ellipsometry that may be used to measure oxide film thickness growth in real time to better understand material degradation. Ellipsometry is an optical technique where the light from a laser is reflected off the specimen surface into a sensor to measure the polarization change (phase and amplitude changes). While this technique is used at ambient pressure and temperature, it is rarely used at HPHT. In this study, the laser light was radiated through a HPHT window attached on an autoclave. This technique was used to measure nanometer to micrometer changes in thickness of an oxide film in supercritical CO2. The oxide film thickness measurements were compared to measurements of the thicknesses using scanning electron microscope imaging of the cross section and to data found in the literature.
One of the frequent and major problems encountered in the oil and gas production is theinternal corrosion of carbon steel pipelines. Corrosion can be categorized into uniform (orgeneral) corrosion, localized corrosion and erosion-corrosion. Uniform corrosion causesoverall metal loss and general thinning of metal. Localized corrosion has the appearanceof pits or grooves.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
High-level radioactive waste generated during reprocessing of spent nuclear fuel at Hanford has been stored in several single- and 27 double shell tanks (DSTs). Each DST consists of a primary shell (inner) surrounded by secondary (outer) liner. The secondary liner rests on a concrete foundation. Rainwater may seep in and accumulate in the drain slots and may corrode the exterior of the secondary liner. Evidence of wall thinning has been detected via ultrasonic inspections of the annulus floor between the primary and secondary tank shells. Since the inspection is confined to this region, there is a concern that corrosion is widespread on the underside of the bottom plate.
F22 is a low alloy steel that typically contains 12% Carbon, 2.25% Chromium, and 1.0% Molybdenum1. This steel has been widely used in oil production systems, especially in well head design and construction. As a low alloy steel, F22 can be corroded by oilfield chemicals under certain circumstances. For example, it was observed in the Gulf of Mexico that typical scale inhibitor chemistries caused severe corrosion on F22.