Search
Filters
Close

Celebrate World Corrosion Awareness Day with 20% off eCourses and eBooks with code WCAD2024 at checkout!

AMPP Conference Papers

View as
Sort by
Display per page
Picture for Material Testing and FFS Modelling for HTHA of Less-Common Alloys: C-0.3Mo
Available for download

Material Testing and FFS Modelling for HTHA of Less-Common Alloys: C-0.3Mo

Product Number: 51324-21142-SG
Author: Jorge Penso; Nathaniel Sutton; Brandon Rollins
Publication Date: 2024
$40.00
Tremendous attention has been devoted to understanding the behavior of common engineering alloys in high temperature hydrogen service. Nelson curves from API RP 9411 are available for the alloys most widely used in HTHA service. However, the aging international fleet of equipment in hydrogen service, across the refining, petrochemical and fertilizer industries means that in-service equipment constructed from less-common alloys must sometimes be evaluated for HTHA. The authors are involved with an 10-year joint industry project studying HTHA. One major outcome of this project is a volumetric HTHA damage FFS model which incorporates stresses from methane pressure within the material into an MPC Omega Multiaxial damage formula. A crack growth model using the fracture mechanics parameter C* (commonly used in creep crack growth)12 is also under development. These two are related in that the C* crack growth law parameters can be calculated utilizing the MPC Omega material creep properties. With sufficient creep data for an uncommon alloy like C-0-.3Mo, lot centered MPC Omega creep properties can be regressed. Such data have been compiled by the authors and resulting Omega creep properties are reported. These creep properties, along with other material properties, are used in the HTHA damage progression and the C* crack growth models. Model predictions using this approach are compared to historically available ex-service HTHA data from API RP 9411 for alloys with Mo contents between that of carbon steel and C-0.5Mo. Selective testing (creep and crack growth testing in both air and hydrogen environments) is in-progress to verify the FFS approach.
Picture for Maximizing Materials Utility through a Next Life Optimization Process
Available for download

Maximizing Materials Utility through a Next Life Optimization Process

Product Number: 51324-20604-SG
Author: William Kovacs; Christopher David Taylor
Publication Date: 2024
$40.00
The carbon footprint of assets will increasingly be of importance to obtain beneficial, economic, social and environmental outcomes of design and engineering projects. Inclusion of a Next Life strategy at asset or product end-of-life can significantly reduce the greenhouse gas (GHG) emissions of First Life assets and Next Life reuses compared to the same uses made from virgin material or recycled content. Traditional engineering design and asset management often only plan for initial use and the management or maintenance strategies necessary to extend First Life, where the First Life is the primary engineering role of the asset. Critically missing from this picture are the costs and environmental impacts incurred throughout the asset or product lifecycle, especially associated with the end-of-life of an asset. A Next Life optimization process for these decisions is described herein that can aid in maximizing the overall Materials Sustainability and Materials Utility (i.e., longevity of fruitful usage) embedded in assets. It consists of appraisal, brainstorming, partnering and evaluation of beneficial impact for particular Next Life options allowing the benefits they can provide to First Life and Next Life opportunities. These benefits can include a reduction in carbon footprint over a lifecycle, cost savings related to GHG emissions, cost savings related to reused material/labor for Next Life assets, or other beneficial impact (even if increased financial cost). The process includes a qualitative conceptual assessment that can feed into a more detailed quantitative assessment for optimization of Next Life materials usage.
	Picture for MEA Triazine Contactor Optimization to Increase Efficiency and Reduce Fouling Potential
Available for download

MEA Triazine Contactor Optimization to Increase Efficiency and Reduce Fouling Potential

Product Number: 51324-20391-SG
Author: Willem-Louis Marais
Publication Date: 2024
$40.00
Liquid absorbents have been utilized for decades to remove impurities from produced natural gas. Throughout the last 15 years, monoethanolamine (MEA) triazine has become an industry-recognized name for the removal of sour gas (H2S). MEA triazine has one of the lowest cost profiles in terms of cost per mass of H2S removed and has obtained a commodity status. It is widely used in the oil and gas industry, both on production (upstream, midstream) and processing (downstream). MEA Triazine is typically applied via direct injection into flowlines or applied in contactor vessels (“scrubbers”, “towers”, “bubble columns”). The application type depends on numerous factors but in general, the application via contactor vessel is preferred due to its increased efficiency. However, due to the many different contactor configurations available, a wide range of efficiencies are achieved, ranging from 50 – 70%. MEA Triazine systems are also known to foul with acid-insoluble polymeric solids. This occurs when the MEA Triazine and its reaction products are not managed properly, or the system is not designed for the specific conditions. The spent material, commonly referred to as dithiazine, can form solids (amorphous dithiazine) in the contactor packing, post contactor separator, or in downstream pipelines if carry-over occurs. This paper aims to provide the reader guidance on how to optimize MEA Triazine contactor vessels to achieve maximum efficiency and to reduce or eliminate fouling. Optimization principles discussed will include contactor configurations, contactor modifications, and MEA Triazine properties and its effect on system performance. Increasing system efficiency and eliminating solids formation in these systems will have a direct impact on the user’s operating expense (OPEX). This is due to better scavenger utilization and a reduction in maintenance and downtime due to solids formation. A reduction in scope three emissions will also be achieved.