Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!

MEA Triazine Contactor Optimization to Increase Efficiency and Reduce Fouling Potential

Liquid absorbents have been utilized for decades to remove impurities from produced natural gas. Throughout the last 15 years, monoethanolamine (MEA) triazine has become an industry-recognized name for the removal of sour gas (H2S). MEA triazine has one of the lowest cost profiles in terms of cost per mass of H2S removed and has obtained a commodity status. It is widely used in the oil and gas industry, both on production (upstream, midstream) and processing (downstream). MEA Triazine is typically applied via direct injection into flowlines or applied in contactor vessels (“scrubbers”, “towers”, “bubble columns”). The application type depends on numerous factors but in general, the application via contactor vessel is preferred due to its increased efficiency. However, due to the many different contactor configurations available, a wide range of efficiencies are achieved, ranging from 50 – 70%. MEA Triazine systems are also known to foul with acid-insoluble polymeric solids. This occurs when the MEA Triazine and its reaction products are not managed properly, or the system is not designed for the specific conditions. The spent material, commonly referred to as dithiazine, can form solids (amorphous dithiazine) in the contactor packing, post contactor separator, or in downstream pipelines if carry-over occurs. This paper aims to provide the reader guidance on how to optimize MEA Triazine contactor vessels to achieve maximum efficiency and to reduce or eliminate fouling. Optimization principles discussed will include contactor configurations, contactor modifications, and MEA Triazine properties and its effect on system performance. Increasing system efficiency and eliminating solids formation in these systems will have a direct impact on the user’s operating expense (OPEX). This is due to better scavenger utilization and a reduction in maintenance and downtime due to solids formation. A reduction in scope three emissions will also be achieved.
Product Number: 51324-20391-SG
Author: Willem-Louis Marais
Publication Date: 2024
$40.00
$40.00
$40.00
Product tags
Also Purchased
Picture for 96612 EFFECT OF OXYGEN ON THE INTERNAL
Available for download

96612 EFFECT OF OXYGEN ON THE INTERNAL CORROSION OF NATURAL GAS PIPELINES

Product Number: 51300-96612-SG
ISBN: 96612 1996 CP
Author: C.L. Durr, J.A. Beavers
$20.00
Picture for 11120 Sulfur Corrosion Due To Oxygen Ingress
Available for download

11120 Sulfur Corrosion Due To Oxygen Ingress

Product Number: 51300-11120-SG
ISBN: 2011 11120 CP
Author: Joseph Boivin and Scott Oliphant
Publication Date: 2011
$20.00