Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Production of oil and gas is well known to cause potential corrosion issues due to the CO2 content in the well stream. Carbon steel is widely used for production facilities as e.g. flowlines and manifolds, however, aging of the reservoir increases the number of corrosive agents, such as e.g. CO2, which are known to cause high corrosion rates in carbon steel. Therefore, carbon steel piping is often being replaced with super duplex stainless steel due to its high strength, excellent toughness and good corrosion resistance. Replacing carbon steel with super duplex has been conducted on several mature offshore oilfields in the European North Sea region.
This article is based on a failure analysis, where a pressurized 4” super duplex (UNSS32760) elbow from a hydrocarbon system suddenly leaked during service, due to a 90 mm long crack.The crack originated from a corrosion pit and was caused by intermetallic precipitations in the microstructure in a small area of the elbow. The intermetallic precipitations were the result of inadequate heat treatment of the elbow during production. A screening procedure based on ferrite measurements applying handheld ferrite measurement devices was developed. If the screening revealed ferrite values outside nominal values, in-situ metallography was performed to either confirm or deny the presence of intermetallic precipitations. On-site metallography was performed by grinding, polishing and electrolytical etching with NaOH. Images were recorded, applying a portable USB microscope at 450x magnification.Intermetallic precipitations were found in other SSDS (Super Duplex Stainless Steel) items from other suppliers as well. In total, 5681 items were screened, 96 (1.7 %) had a ferrite content lower than 35%. Of these 96 items, 25 were examined with in-situ metallography and all 25 had significant amounts of intermetallic precipitations. Impact toughness testing (Charpy V-notch) of SSDS items with intermetallic precipitations at different temperatures ranging from -50°C to +20°C revealed very poor toughness without any indications of a transition temperature.
In this work, the effect of Tungsten on the precipitation kinetics of a 25% Cr SDSS, namely, UNS S32760 was quantified by constructing Time-Temperature-Transformation (TTT) diagrams.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Duplex stainless steels (DSSs) are based on the Fe-Cr-Ni system and are constituted of 30 to 70 % ferrite and austenite. They combine high tensile strength, good toughness, weldability, and excellent corrosion resistance including stress-corrosion cracking and resistance to localized corrosion.1-3 DSSs can be classified according to the Pitting Resistance Equivalent Number (PREN = Cr + 3.3 Mo + 16 N) in lean duplex (PREN= 22-27), standard (PREN = 28-38), super duplex (PREN = 38-45) and hyperduplex (PREN > 45).
The application of corrosion resistance alloys such as 25% Cr super duplex stainless steel (25Cr SDSS) has expanded in the oil & gas industry recently as new technologies made it feasible for Oil and Gas operators to invest in high sour and corrosive fields. 25Cr SDSS material is often used in critical applications such as piping, rotating equipment, coolers, and instrument components etc. SDSS materials are well known for the 50/50 austenite (γ) and ferrite (α) microstructure which provides the combination of corrosion resistance and high-performance mechanical properties.