Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The application of corrosion resistance alloys such as 25% Cr super duplex stainless steel (25Cr SDSS) has expanded in the oil & gas industry recently as new technologies made it feasible for Oil and Gas operators to invest in high sour and corrosive fields. 25Cr SDSS material is often used in critical applications such as piping, rotating equipment, coolers, and instrument components etc. SDSS materials are well known for the 50/50 austenite (γ) and ferrite (α) microstructure which provides the combination of corrosion resistance and high-performance mechanical properties.
25 Cr super duplex stainless steel (SDSS) centrifugal pumps have found vast applications in the Oil & Gas industry for produced water injection systems. An important factor in water injection pump material selection is the need to provide adequate corrosion resistance throughout the operating life cycle. Presence of solids and/or other contaminants in the pumped fluid (e.g. traces of solids, water cut percentage, hydrogen sulphide, chlorides, oxygen, and carbon dioxide content) can impact the corrosion resistance of water injection pumps. SDSS material is used in critical pump components such as casing body, impellers, shafts, balancing lines etc. The main focus of this paper is to present two cases of SDSS centrifugal pump component failures associated with a casing body and balancing line. Pitting corrosion mechanism was found to be the root cause of the both pump component failures. The factors contributed to these two failures will be discussed, in addition lessons learned & mitigation measures will be proposed.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In recent decade, the applications of DSS have significantly increased in oil & gas industry, due to their attractive properties compared to austenitic grades with similar corrosion resistance. The DSS products exhibit a better resistance to pitting, stress corrosion cracking and higher mechanical properties compared to other austenitic stainless steel grades. The microstructure of these materials consists of approximately 50% austenite (γ) and 50% ferrite (α) phases, obtained by means of a solution heat treatment.
The crevice corrosion resistance of duplex and super duplex stainless steels used for seawater pumps was evaluated by comparing the to results tests conducted using actual seawater with the behavior of the stainless steels in artificial seawater