Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Fire is the biggest threat for the crews in aircraft, ships, submarines, and land vehicles. As a result of such threats there have been use of fire/flame retardants coatings increased exponentially to curb economic and social consequences of fire [1]. There are various types of coatings available to fight against the fire. Two classes of fire protection technologies are being used currently, 1) Fire retardant and 2) Fire resistant. Fire retardant coatings are passive fire protection coatings where such coatings can slow down the spread of the flames allowing more time for evacuation and firefighting. Fire resistant coatings typically inhibiting the flame penetration or do not ignite upon in contact with fire [2].
Rapidly growing trends in flame retardant coatings demand environmentally sustainable advancements in coating compositions. Non-halogenated water-based flame retardant coatings can address these concerns. These coatings allow for low flammability, low smoke density and low toxicity. Life Cycle Analysis suggests that these coatings can improve environmental impact by reducing global warming potential while showing superior performance and durability. This coating solution can offer significant application, safety and environmental advantages that reduce total ownership costs and increase structural protection during fire events.
Oil and gas wells represent a large capital investment. It is imperative that corrosion of well casings be controlled to prevent loss of oil and gas, environmental damage, and personnel hazards, and in order to ensure economical depletion of oil and gas reserve. Wells placed in external corrosive environment shall be protected by appropriate barriers such as additional cemented casing, cathodic protection and coating to assure well casing integrity.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
For decades, many asset owner/operators across the O&G value chain (and other critical industry segments) of upstream, midstream, & downstream have struggled to identify the root cause of fluctuating corrosion/erosion rates due to unreliable or infrequent data during various operating intervals on their most valuable of assets. This key missing data point has forced mechanical integrity teams, corrosion engineers, inspectors, and operations to, in many cases, make the best guess or hypothesize how to operate with a limited data set of information. In almost all cases, a time-based inspection or maintenance interval is used to gauge the useful lifetime of assets based on this limited data simply because these assets couldn’t give their owners a real-time health diagnostic of how they were doing … until now.
Aircraft representative galvanic test articles and witness coupons were placed out for atmospheric exposure testing at the U.S. Naval Research Lab (NRL) site in Key West, Florida. One set of test specimens was exposed to only ambient environment for a 62 day period; a second set of test specimens was exposed to both ambient environment (initial 62 days), and a short duration, twice daily, seawater spray protocol over a further 55 day period. Environmental loading was monitored using sensors that measured temperature, relative humidity, rainfall, and time of wetness (TOW), at 30 minute intervals. Following retrieval, the test articles were inspected in the laboratory using laser profilometry to characterize the spatial distribution and depth of corrosion damage. Mass loss measurement using the witness coupons was used to estimate relative corrosion rates for the two periods.