Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The permeance of coatings applied to the walls of Single Wythe concrete masonry units (CMU) can affect the long-term performance of the coating system, especially after multiple repaints. This paper describes the results of a study to determine if the Atlas Cell Test (NACE TM0174/ASTM C868) can be modified to evaluate the performance of individual coating systems based upon permeance.
The permeance of coatings applied to the walls of Single Wythe concrete masonry units (CMU) can affect the long-term performance of the coating system, especially after multiple repaints. This paper describes the results of a study to determine if the Atlas Cell Test (NACE TM0174/ASTM C868) can be modified to evaluate the performance of individual coating systems based upon permeance. Coating systems with permeance (WVP US perm ratings) from < 10 perms to > 60 perms were used in the research. The goal of the test program is to establish a protocol that can eventually be used to determine the number of times that a given system can be repainted before the reduction in permeance causes concerns with blistering or peeling.
Inspection has always been a hot topic when it comes to coatings projects. There are some substrates that can be harder to specify due to not knowing without knowing which testing is relevant to specify and properly inspect the substrate and surface after it is coated. Concrete is probably the number one substrate that is confusing. This paper will dive into the testing that is relevant when specifying coatings for concrete tanks and structures. Whether it is how to properly check film build or whether or not an ASTM test is relevant, this paper will clear the waters and make specifying coatings for concrete tanks and structures easier.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper describes experimental work investigating the influence of steel surface roughness on the adhesion performance of fusion bonded epoxy (FBE) pipeline coatings. The paper begins with a summary of the standards and methods that can be used to measure surface roughness. Several parameters are used to characterize the roughness of a blast cleaned steel including profile peak height and peak count. Tortuosity and rugosity indicate the proportional increase in steel surface area developed by roughening the surface. Normal pipeline coating industry practice is to specify and control a single roughness parameter termed “surface profile”. It is measured with replica tape and corresponds to the maximum peak-to-valley height.In the experimental work steel panels were abrasive blast cleaned with various steel shot and grit abrasives and the roughness characteristics of the blast cleaned surface were measured with stylus profilometers conventional replica tape and 3D imaging of replica tape.A FBE pipeline coating was applied to the prepared steel panels. The adhesion performance of the FBE coating was evaluated using the following test methods.<ul><li>Hot water immersion adhesion rating per CSA Z245.20 section 12.14 </li><li>Pull-off adhesion strength after hot water soak exposure per ASTM 4541 </li><li>Cathodic disbondment radius at 65 and 80 °C per CSA Z245.20 section 12.8 </li><li>Time before blisters were observed in Atlas Cell per NACE TM0174 modified </li><li>Average blister diameter in Atlas Cell </li><li>Pull-off adhesion strength after Atlas Cell exposure per ASTM 4541 </li></ul>The experimental data were analyzed using statistical techniques to investigate the relationship between the measured surface roughness and the adhesion test results. The adhesion results were found to be positively and linearly correlated with substrate tortuosity and rugosity. Profile peak height and peak count were found to contribute to tortuosity.
Traditional internal lining schemes for the storage/transport of crude oil & refined fuels may no longer be appropriate. The aggressive nature of crude oil (high temp. & more sour), high purity refined products & increased use of biofuels demand better linings & more certain test results. The focus of this paper is to review the trends in test methodology from the early 1990’s to present.