Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Corrosion of carbon steel is the most prominent reason for pipeline failure in a range of industries, from oil and gas transportation to water treatment facilities and nuclear waste storage. Under-deposit corrosion occurs in low fluid flow rate environments, when particulate matter (such as sand and clay) settles on the bottom of transportation pipelines. The presence of deposits results in a diffusion barrier, which significantly alters interfacial solution chemistry compared with that of the bulk.
Under-deposit corrosion of carbon steel is a major issue in many industries, leading to pipeline failure. In environments with low fluid flow rates, inert matter settles and accumulates on the bottom of pipelines, leading to localized corrosion. Large pit-like features can be detected under the deposits but limited understanding exists surrounding the use of chemical corrosion inhibitors in stifling their growth. In this study, a bespoke test setup has been used to evaluate the performance of different inhibitor chemistries in stifling the corrosion of deep pit-like features under thick (< 8 mm) inert deposit layers. Potentiodynamicpolarization and electrochemical impedance spectroscopy measurements were used to assess the corrosion profile of X65 carbon steel at recession depths of 0 mm and 9 mm in 2 wt.% NaCl brine, under CO2-saturated conditions, at 50 °C. Galvanic corrosion in the presence of corrosion inhibitors was measured via a zero-resistance ammeter. 2-mercaptoethanol was able to reduce corrosion rates in the presence of inert silicone dioxide deposit layers. In contrast, an imidazoline derivative was considerably less effective under the same conditions. Scanning electron microscopy was used for visual assessment of surface damage after 20 hours of corrosion.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.