Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
On March 2011 at Fukushima Daiichi NPS, seawater was injected into spent fuel pools just after the accident for emergency cooling. The temperature of the water in a pool raised up to 93 ℃, and the chloride ion concentration raised up to 1,944 ppm (maximum) after seawater injection. In this high temperature and high chloride ion concentration environment, localized corrosion including crevice corrosion may have occurred on components made of passive metals such as stainless steels. The environment is assumed to be susceptible to crevice corrosion for 304 SS based on laboratory experiments and the concept of ER, CREV. There is a low possibility of initiating localized corrosion after the water was purified and deoxygenated. However, it is not certain whether localized corrosion, once initiated and propagated under the severe condition, will repassivate after the bulk water is purified. It is necessary to examine the continuity of crevice corrosion propagation when the bulk water is purified and deaerated, which means the cathodic reactions outside the crevice will no longer contribute to the propagation of the corrosion.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Austenitic stainless steels (SS) are the candidate materials for dry storage canisters. In general, high corrosion resistance is one of the advantageous properties of austenitic stainless steels. However, austenitic stainless steels are susceptible to chloride induced stress corrosion cracking (CISCC) when three criteria are satisfied: susceptible materials, tensile stress and corrosive environments. Dry storage canisters are located at a coastal site in Taiwan, as a result, canisters are exposed to high concentration of moisture and chloride salts under atmospheric environments.
Most of the core internal components of light water reactors (LWRs) are made of austenitic stainless steels (SSs). Exposed to fast neutron irradiation, reactor core internal components are vulnerable to irradiation-induced or irradiation-enhanced degradations. At LWR-relevant temperatures and irradiation doses, significant microstructural and microchemical changes can take place in SSs, leading to deteriorated mechanical and corrosion properties.
Electrical cables are critical components of nuclear power plants (NPPs) that ensure their safe operation. In use they are exposed to a wide range of environmental stresses, such as elevated temperature, gamma radiation, moisture, and electrical stress. Among the different environmental stresses, elevated temperature leads to the thermo-oxidative degradation of electrical cable insulation, which may cause early failure of electrical cables and subsequently lead to unplanned plant shutdowns, electrical transients, and/or a loss of safety redundancy.
Approximately 20% of the electricity produced in the United States (U.S.) comes from nuclear power plants (NPPs). Originally, U.S. NPPs were qualified for an operational lifetime of 40 years and NPPs can apply for 20-year license extensions following the original 40-year operating period. While most NPPs have entered extended license periods to 60 years, some are considering license extension to 80 years of operation. The viability of a subsequent license renewal (SLR) is dependent upon NPPs operating safely in accordance with a licensing basis similar to that established with the original 40-year license.
Due to the strength, ductility, fracture toughness, corrosion resistance and especially the coefficient of thermal expansion, which is between stainless steel and low alloy steel, Ni-based alloys are used as weld metals in BWR and ABWR internals. Ni-based alloys with high chromium (Cr) concentration, such as Alloy 52 (Cr: 28-31.5 wt.%), Alloy 52i (Cr: 26-28 wt.%) and so on are expected to have higher SCC resistance than 182 (Cr: 13-17 wt.%) and Alloy 82 (Cr: 18-22 wt.%) in BWR environment.
Water chemistry definition in nuclear fusion research experiments is under development. Many nuclear fusion experiments, such as the Italian Divertor Tokamak Test Facility (DTT)[1], the Korea Superconducting Tokamak Advanced Research (KSTAR) [2] and Japan Torus-60 Super Advanced (JT60SA) [3] reactors consider the use of enriched boric acid (up to 95% 10B) in water to shield the superconducting coils by neutrons generated from nuclear fusion reactions in the plasma chamber.
Alloy 600 is known to be susceptible to intergranular attack (IGA) and stress corrosion cracking (SCC) under pressurized water reactor (PWR) primary water conditions, leading to the replacement of some steam generator components with the more SCC-resistant Alloy 690.3 Despite this shift many Alloy 600 components are still found in service today. A substantial body of research has identified many underlying processes leading to the degradation of Alloy 600.
Naval Nuclear Laboratory has developed Alloy 52i, a high chromium (~27 wt%) weld metal that can be welded onto Alloy 600, Alloy 625, or Alloy 690 wrought material. Alloy 52i by itself has shown to be very resistant to SCC in deaerated pure water. However, there is a concern when welding Alloy 52i onto the more SCC susceptible Alloy 82H or Alloy 600 that the first weld bead would be chromium diluted by the mixing with the lower-chromium base metal. This lower chromium level may lead to higher SCC susceptibility than the surrounding weld metal, since chromium content has shown a correlation with nickel alloy SCC susceptibility. In commercial nuclear power applications, many plant components are limited by SCC propagation in welded components within the weld metal; this test program seeks to understand which weld combinations, with respect to chromium concentration, may yield deleterious SCC properties for improved lifetime of plant components.
Stress corrosion cracking (SCC) growth in 300-series stainless steels (SS) exposed to high temperature water is known to generally increase with increasing levels of cold work. The influence of cold work on SCC has been reported for both oxygenated boiling water reactor (BWR) normal water chemistry as well as for hydrogenated pressurized water reactor (PWR) water chemistry.
About 39 years ago, the first author of this paper has successfully developed the Thermally Treated (TT) Alloy 690, with his colleagues from Mitsubishi Heavy Industries, Ltd. at that time and with people from Sumitomo Metal Industries, Ltd. (the company name at that time, now Nippon Steel Corporation). And they have practically applied TT Alloy 690 to steam generator (SG) tubes. The developed TTAlloy 690 consists of the combinations between the fully solution heat treatment (SHT) condition before TT and carbon content, particularly selected with an optimized microstructure verified by transmission electron microscopy (TEM).
In a polycrystalline material, the stress distribution on a microscopic scale is not uniform due to the elastic anisotropy and slip systems of constituent crystal grains. This leads to localized high stresses, especially at grain boundaries, when a load is applied to the material. In this paper, this localized stress is called as “microscopic stress”, distinguishing it from that in a homogeneous continuous body.