Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Additive manufacturing is a term that encompasses a number of technologies that manufacture structures by building material up, layer by layer, and which are attractive due to a number of factors, such as the ability to rapidly produce complex components with controlled microstructures in a single step with reduced post processing requirements. Laser-powder bed fusion (L-PBF) is an additive manufacturing technique where a laser continuously melts successive layers of powder material, building up from a horizontal build plate.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper describes the evolution of production standards for Alloy 600 tubing, the historical performance of steam generator tubing, and the results of microstructural analyses of archive and pulled tubing samples from commercial PWRs to address these issues. Alloy 600 is a corrosion-resistant nickel-base alloy that is used in a variety of applications that require good resistance to general corrosion, high strength, and good formability. It has been used extensively for steam generator tubing in commercial nuclear power plants, and this experience led to the use of several different types of Alloy 600 material.
After the Fukushima accident there has been a large push globally for accident tolerant fuels (ATF) to increase the grace period during an accident, that is, the time during which operators may be able to avoid major consequences by undertaking mitigating actions. At Fukushima, the oxidation of the Zircaloy cladding produced hydrogen gas, that contributed to the failure of the primary containment. A concept for ATF is to coat zirconium-based cladding with chromium to inhibit the oxidation of the cladding and reduce hydrogen production.
Stress corrosion cracking (SCC) of Type 304 stainless steel (304 SS) in elevated temperature (288 °C) high purity water is typically an intergranular (IG) process with cracks propagating along grain boundaries, which are mesoscopic entities relevant on the grain scale. It follows then that the nature of the grain boundaries plays a significant role in SCC. In fact, for IG SCC to occur three things must be present: 1) stress; 2) a corrosive environment; and 3) susceptible grain boundaries. SCC growth rate (SCCGR) equations for 304SS in high temperature, high purity water, test orientation, temperature, material composition, and sensitization.
The potential extension of the lifetime of nuclear power plants has cultivated an interest in the long-term aging behaviour of materials such as concrete. Since concrete is a complex material and its properties evolve with time, the effect of prolonged radiation exposure is of high interest and needs to be understood. Cracking and radiation-induced volumetric expansion (RIVE)(Le Pape et al., 2020) of the mineral components in aggregates occur as a result of neutron radiation and depends on several factors including the chemical nature and mineralogical characteristics of the aggregates such as composition, crystallinity, grain size, and phase distribution.
The interaction of metals and alloys with aqueous environments is ubiquitous, leading to oxide formation (passivity) or corrosion in many cases. Although these phenomena have significant importance across various industries and domains of materials science, the fundamental atomic-scale mechanisms by which corrosion and oxide formation operate are still unclear. Oxide films can have complex chemistry and texture, especially at the metal-oxide interface which acts as the primary barrier from solution interaction. The Zr-H2O system has industrial and academic interest due to its use in nuclear reactors.
It is of sustained interest to estimate the remaining useful lifetime of polymers used as cable insulation in nuclear power plants for cable aging management and license extension purposes. Studies have been focused on a range of topics from mechanism of degradation process, kinetic modeling, effects on chemical signatures and mechanical properties, and accelerated aging techniques for lifetime prediction.
Nuclear power has been the largest source of carbon-free power in the U.S. (and much of the developed world) for almost a half century. As such, in the U.S. today, nuclear power plants of the Light Water Reactor (LWR) design generate 20% of all electricity, comprising over half of carbon-free electricity generation. In order to meet the short-term 2030 greenhouse gas emission reduction target, the existing nuclear fleet will play an important role, while the development and deployment of advanced reactors such as the small modular reactors (SMR) of the LWR design can be accelerated.
This paper outlines and summarizes the robust testing and assessment program developed and implemented by the Electric Power Research Institute (EPRI), following upon an initial feasibility evaluation completed in 2015. A multi-year, multi-discipline program has been developed, incorporating significant industry input, to address the identified technical gaps in materials, fuels, chemistry, and radiation safety that need evaluation to support a plant demonstration in a Western-design PWR.
The Nuclear Regulatory Commission’s (NRC’s) approach to preparing to regulate and review industry proposals for using advanced manufacturing technologies (AMTs) in commercial nuclear applications focuses on identifying differences with AMT relative to conventional manufacturing. Initial AMTs based on industry interest include laser powder bed fusion (LPBF) and laser-directed energy deposition (L-DED) additive manufacturing (AM) methods, powder metallurgy-hot isostatic pressing (PM-HIP), electron beam welding (EBW), and cold spray (CS).
SCC in Fe- and Ni-base alloys has been observed in high temperature water, both in the laboratory tests and in BWRs. SCC results from complex interactions of ~10 primary variables and hundreds of secondary variables, broadly categorized in terms of stress, environment and microstructure.
A database of SCC growth rates in commercial austenitic stainless steels exposed to pressurized water reactor (PWR) primary water environments was developed and analyzed from international data in high temperature water, with an emphasis on deaerated or hydrogenated water while also including water containing oxygen. Crack growth rate (CGR) disposition equations were derived to reflect the effects of stress intensity factor (K), temperature, Vickers hardness (HV, to represent retained deformation), with enhancement factors for oxygen-containing, high corrosion potential conditions. The tolerance to chloride and sulfate impurities in PWR primary water was also evaluated.