Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Today, multi-purpose, built-for-purpose, all-in-one, pipeline integrity automation, wireless, data communication radios are available that monitor and report all cathodic protection rectifier operations, automate rectifier interruption, monitor rectifier operational status, monitor and report pipe-to-soil potential, pipeline pressure and pipeline pigging operations.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In an effort to increase the knowledge of the cleaning efficiency of typical pig designs at removing sludge and debris from pre-existing corrosion pits, a novel test setup and method has been devised.
Pressure cycling and ultimate failure pressure testing was conducted on various pipe samples to verify the design formulas meet the specifications and are correct for use in design of field repairs. Results show that use of strain-based design methodologies for composite repair systems is suitable and effective.
The purpose of this paper is to present a framework for the integrity assessment of unpiggable pipelines, which are subject to internal corrosion. This integrity assessment is done by combining probabilistic flow and corrosion models with risk assessment.
The present paper presents and discusses the various components contained in an electrical equivalent circuit describing the AC corrosion process from a computer modelling perspective.
A new approach in pipeline integrity management based on mechanistic modelling. Electrochemical reactions at coating defects are simulated for the entire pipeline network, in the presence of AC and DC interference resulting in the visualization of the IR-free potentials and corrosion rates.
Impact of exposure to a low temperature environment below -30oC (-22oF) was investigated on a carbon fiber and epoxy composite repair system that had previously been qualified to the ASME(1) PCC-21 Article 4.1 nonmetallic repair standard.
Challenges associated with coordinating the modelling, design, and installation of an alternating current interference and mitigation systems. The project consisted of a 65 kilometer long double circuit 500 kilovolt (kV) overhead transmission in a heavily congested right-of-way corridor with more than 80 pipelines.
AC interference analysis between high voltage AC (HVAC) powerlines and buried pipelines is a matter of current interest due to the growing number of right-of-ways shared between powerline and pipeline infrastructure. This is only expected to increase as the worldwide energy demand grows considerably over the next 30 years,1 and stricter environmental regulations and policies are applied. Therefore, AC interference will continue to be an issue of concern for powerline and pipeline operators to protect the public, environment, and maintain asset integrity.
The Enbridge External Corrosion Prevention team (ECP) is developing an Integrated External Corrosion Management (IECM) process by which management of external corrosion control systems can be optimized whilemaintaining asset integrity and safety. IECM is intended to provide a methodology by which operators can move from a traditional reactive approach to a state-of-the-art proactive strategy commensurate with industry expertise and technology. Here we discuss a case study intended to demonstrate and assess the outcomes of IECM. The subject is a 12-inch diameter crude oil pipeline located in North America. Results of the process reveal opportunities for improvement and efficiencies in operation and maintenance (O&M).