Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The purpose of this paper is to present a framework for the integrity assessment of unpiggable pipelines, which are subject to internal corrosion. This integrity assessment is done by combining probabilistic flow and corrosion models with risk assessment.
The baseline for pipeline integrity is usually established using a validation technique such as in-line inspection (ILI). However there are many pipelines that present operational restrictions for the use of ILI tools these pipelines are known as unpiggable. The purpose of this paper is to present the framework for the risk and integrity assessment of unpiggable pipelines. This paper will focus on internal corrosion including microbiologically influenced corrosion (MIC).The proposed framework will include flow simulation internal corrosion modelling and risk assessment. The flow simulation will consider a multi-phase fluid to represent the operational conditions of gathering pipelines. For internal corrosion prediction the electrochemical model used will include the influence of solids deposition and also a DNA sequencing analysis for assessing MIC. Then corrosion growth modelling and quantitative risk assessment will be used to estimate the location and rate of internal corrosion and to calculate the probability and consequence of failure respectively. The considered pipeline operates within an environmentally sensitive area therefore this framework will concentrate the analysis on this specific application. In addition the risk model will be used to define the optimum location time and techniques of inspection that will be performed by direct examination of the pipeline. Field verification will be applied in each stage of the process once data is available and this information will be used for model validation. The risk assessment approach will also identify mitigation actions to reduce the probability of failure due to internal corrosion.Analytical flow simulators and internal corrosion prediction tools are currently used as deterministic processes therefore this framework proposes a new stochastic approach to improve the knowledge and understanding of the uncertainties involved in the corrosion growth. Finally this framework represents an alternative for the risk and integrity assessment of unpiggable pipelines.
Key words: unpiggable pipeline, risk assessment, pipeline integrity, internal corrosion, optimal decision making
This paper will discuss the effectivity of ranking the crude pipelines due to their product corrosivity based on certain parameters such as corrosion coupons, cleaning pig deposit sampling analyses, microbial activity and previous ILI records.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A risk assessment model developed as part of a holistic study conducted to evaluate the condition of subsea pipelines. A systematic semi-quantitative risk-based model was developed to identify, analyze and evaluate risk associated with each subsea pipeline.