Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
As part of a project to develop a database of seawater corrosion resistance including resistance to microbiologically-influenced corrosion (MIC) seawater, MIC exposure tests of five stainless steel alloys were undertaken for three and six month durations.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The monitoring program used in the Danish Sector of the North Sea to manage microbiologically influenced corrosion (MIC) risk assessment for seven pipelines. Quantitative data on microbial activity was obtained from pigging debris using real-time polymerase chain reaction of MIC-causing microorganisms.
Water-handling oil producing facilities often become target for microbial contamination because treated waters are not sterile – they are inhabited by various microorganisms and contain sufficient inorganic and organic nutrients to support microbial growth. The bacterial contamination and bioburden are to extravagate easily if environmental conditions in the facilities, for instance, moderate temperature (<45C) and salinity (<50 g/l TDS), favor microorganisms. Growing bacterial population distributes along the system and forms biofilms on the surfaces of pipelines, valves, vessels, tanks, etc. Such spreading of free-floating (planktonic) and sessile (biofilm) bacteria in industrial systems is referred to as biofouling.
A stationary testing method and a porous media flow reactor method were used for these studies. The effect of different NRB, including NO2NRB and sulfide-oxidizing NRB (SONRB) on corrosion of carbon steel beads in the presence and absence of nitrate was also investigated using porous media flow reactors.
Uncontrolled growth of microorganisms in the oil field production systems have a major negative impact on the productivity and asset integrity in oil and gas industry. Sulphate-reducing bacteria (SRB) have been found as the most troublesome group of microorganisms among all organisms involved in MIC of carbon steel and other metals used in the oil industry (Abdullah et al 2014). The formation of SRB biofilm on steel surface can affect the kinetics of anodic and cathodic reactions, leading to an acceleration of steel corrosion (Beech and Sunner, 2004: Zuo,2007). In addition to that, SRB contributes to hydrogen sulfide-driven reservoir souring, increased suspended solids, reservoir plugging, etc., in oil field sites.
Microbiologically influenced corrosion (MIC) is a key oilfield problem associated with microbial activity, and can be described as the accelerated corrosion of surfaces (usually concrete or iron/steel) by the biological action of naturally present or externally introduced microorganisms. MIC incidents can occur anywhere that a system is exposed to the environment, where microorganisms can enter often via fluid flow and colonize various surfaces for their own growth. MIC is a persistent concern in practically any upstream, midstream, or downstream system where water could be present for microorganism colonization, including topside, subsurface, aerobic (with oxygen), anaerobic (without oxygen), and at extreme temperatures and salinities.